Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 124(Pt A): 204-213, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348559

RESUMEN

Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2ms and <200µm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7×5×2mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures.


Asunto(s)
Electroencefalografía/métodos , Corteza Somatosensorial/fisiología , Tomografía/métodos , Percepción del Tacto/fisiología , Animales , Ondas Encefálicas , Impedancia Eléctrica , Electrodos Implantados , Potenciales Evocados Somatosensoriales , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Microelectrodos , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador
2.
Physiol Meas ; 35(6): 1095-109, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24845144

RESUMEN

A method is presented for reconstructing images of fast neural evoked activity in rat cerebral cortex recorded with electrical impedance tomography (EIT) and a 6 × 5 mm(2) epicortical planar 30 electrode array. A finite element model of the rat brain and inverse solution with Tikhonov regularization were optimized in order to improve spatial resolution and accuracy. The optimized FEM mesh had 7 M tetrahedral elements, with finer resolution (0.05 mm) near the electrodes. A novel noise-based image processing technique based on t-test significance improved depth localization accuracy from 0.5 to 0.1 mm. With the improvements, a simulated perturbation 0.5 mm in diameter could be localized in a region 4 × 5 mm(2) under the centre of the array to a depth of 1.4 mm, thus covering all six layers of the cerebral cortex with an accuracy of <0.1 mm. Simulated deep brain hippocampal or thalamic activity could be localized with an accuracy of 0.5 mm with a 256 electrode array covering the brain. Parallel studies have achieved a temporal resolution of 2 ms for imaging fast neural activity by EIT during evoked activity; this encourages the view that fast neural EIT can now resolve the propagation of depolarization-related fast impedance changes in cerebral cortex and deeper in the brain with a resolution equal or greater to the dimension of a cortical column.


Asunto(s)
Hipocampo/fisiología , Procesamiento de Imagen Asistido por Computador , Tomografía/instrumentación , Tomografía/métodos , Animales , Mapeo Encefálico , Simulación por Computador , Impedancia Eléctrica , Electrodos , Hipocampo/anatomía & histología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA