Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Langmuir ; 40(29): 14838-14846, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38978473

RESUMEN

The impact of the reaction environment on the formation of the polycrystalline layer and its biomedical (antimicrobial) applications were analyzed in detail. Copper oxide layers were synthesized using an electrodeposition technique, with varying additives influencing the morphology, thickness, and chemical composition. Scanning electron microscopy (SEM) images confirmed the successful formation of polyhedral structures. Unmodified samples (CuL) crystallized as a mixture of copper oxide (I) and (II), with a thickness of approximately 1.74 µm. The inclusion of the nonconductive polymer polyvinylpyrrolidone (PVP) during synthesis led to a regular and compact CuO-rich structure (CuL-PVP). Conversely, adding glucose resulted in forming a Cu2O-rich nanostructured layer (CuL-D(+)G). Both additives significantly reduced the sample thickness to 617 nm for CuL-PVP and 560 nm for CuL-D(+)G. The effectiveness of the synthesized copper oxide layers was demonstrated in their ability to significantly reduce the T4 phage titer by approximately 2.5-3 log. Notably, CuL-PVP and CuL-D(+)G showed a more substantial reduction in the MS2 phage titer, achieving about a 5-log decrease. In terms of antibacterial activity, CuL and CuL-PVP exhibited moderate efficacy against Escherichia coli, whereas CuL-D(+)G reduced the E. coli titer to undetectable levels. All samples induced similar reductions in Staphylococcus aureus titer. The study revealed differential susceptibilities, with Gram-negative bacteria being more vulnerable to CuL-D(+)G due to its unique composition and morphology. The antimicrobial properties were attributed to the redox cycling of Cu ions, which generate ROS, and the mechanical damage caused by nanostructured surfaces. A crucial finding was the impact of surface composition rather than surface morphology on antimicrobial efficacy. Samples with a dominant Cu2O composition exhibited potent antibacterial and antiviral properties, whereas CuO-rich materials showed predominantly enhanced antiviral activity. This research highlights the significance of phase composition in determining the antimicrobial properties of copper oxide layers synthesized through electrodeposition.


Asunto(s)
Antibacterianos , Antivirales , Cobre , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanoestructuras/química , Staphylococcus aureus/efectos de los fármacos , Técnicas Electroquímicas
2.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36298151

RESUMEN

The presented research shows the possibilities of creating in-line magnetic sensors based on the detection of changes of light propagation parameters, especially polarization, obtained by mixing Fe3O4 nanoparticles with hexadecane (higher alkane) surrounding a biconical optical fiber taper. The fiber optic taper allows to directly influence light parameters inside the taper without the necessity to lead the beam out of the structure. The mixture of hexadecane and Fe3O4 nanoparticles forms a special cladding surrounding a fiber taper which can be controlled by external factors such as the magnetic field. Described studies show changes of transmission (power, loss) and polarization properties like azimuth, and ellipticity, depending on the location of the mixture on sections of tapered optical fiber. The taper was made of a standard single-mode telecommunication fiber, stretched out to a length of 20.0 ± 0.5 mm and the diameter of the tapers is around 15.0 ± 0.3 µm, with the loss lower than 0.5 dB @ 1550 nm. Such a taper causes the beam to leak out of the waist structure and allows the addition of the external beam-controlling cladding material. The presented research can be used to build polarization switches or optical sensor. The results show that it can be a new way to control the propagation parameters of a light beam using tapered optical fiber and magnetic mixture.

3.
Phys Rev Lett ; 125(5): 056001, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794889

RESUMEN

Two oppositely charged surfaces separated by a dielectric medium attract each other. In contrast we observe a strong repulsion between two plates of a capacitor that is filled with an aqueous electrolyte upon application of an alternating potential difference between the plates. This long-range force increases with the ratio of diffusion coefficients of the ions in the medium and reaches a steady state after a few minutes, which is much larger than the millisecond timescale of diffusion across the narrow gap. The repulsive force, an order of magnitude stronger than the electrostatic attraction observed in the same setup in air, results from the increase in osmotic pressure as a consequence of the field-induced excess of cations and anions due to lateral transport from adjacent reservoirs.

4.
Angew Chem Int Ed Engl ; 59(26): 10301-10305, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32080948

RESUMEN

When components of a metal-organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly-spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution-based methods. The reaction-diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal-organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.

5.
Chem Soc Rev ; 46(18): 5647-5678, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28703815

RESUMEN

Although dynamic self-assembly, DySA, is a relatively new area of research, the past decade has brought numerous demonstrations of how various types of components - on scales from (macro)molecular to macroscopic - can be arranged into ordered structures thriving in non-equilibrium, steady states. At the same time, none of these dynamic assemblies has so far proven practically relevant, prompting questions about the field's prospects and ultimate objectives. The main thesis of this Review is that formation of dynamic assemblies cannot be an end in itself - instead, we should think more ambitiously of using such assemblies as control elements (reconfigurable catalysts, nanomachines, etc.) of larger, networked systems directing sequences of chemical reactions or assembly tasks. Such networked systems would be inspired by biology but intended to operate in environments and conditions incompatible with living matter (e.g., in organic solvents, elevated temperatures, etc.). To realize this vision, we need to start considering not only the interactions mediating dynamic self-assembly of individual components, but also how components of different types could coexist and communicate within larger, multicomponent ensembles. Along these lines, the review starts with the discussion of the conceptual foundations of self-assembly in equilibrium and non-equilibrium regimes. It discusses key examples of interactions and phenomena that can provide the basis for various DySA modalities (e.g., those driven by light, magnetic fields, flows, etc.). It then focuses on the recent examples where organization of components in steady states is coupled to other processes taking place in the system (catalysis, formation of dynamic supramolecular materials, control of chirality, etc.). With these examples of functional DySA, we then look forward and consider conditions that must be fulfilled to allow components of multiple types to coexist, function, and communicate with one another within the networked DySA systems of the future. As the closing examples show, such systems are already appearing heralding new opportunities - and, to be sure, new challenges - for DySA research.

6.
Bioconjug Chem ; 28(2): 419-425, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27990800

RESUMEN

Robust detection of bacteria can significantly reduce risks of nosocomial infections, which are a serious problem even in developed countries (4.1 million cases each year in Europe). Here we demonstrate utilization of novel multifunctional bioconjugates as specific probes for bacteria detection. Bifunctional magnetic-fluorescent microparticles are coupled with bacteriophages. The T4 bacteriophage, due to its natural affinity to bacterial receptors, namely, OmpC and LPS, enables specific and efficient detection of Escherichia coli bacteria. Prepared probes are cheap, accessible (even in nonbiological laboratories), as well as versatile and easily tunable for different bacteria species. The magnetic properties of the bioconjugates facilitate the separation of captured target bacteria from other components of complex samples and other bacteria strains. Fluorescence enables simple analysis. We chose flow cytometry as the detection method as it is fast and widely used for biotests. The capture efficiency of the prepared bioconjugates is close to 100% in the range of bacteria concentrations from tens to around 105 CFU/mL. The limit of detection is restricted by flow cytometry capabilities and in our case was around 104 CFU/mL.


Asunto(s)
Bacteriófago T4/metabolismo , Escherichia coli/aislamiento & purificación , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/química , Microesferas , Factores de Tiempo
7.
Soft Matter ; 12(18): 4162-9, 2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27074722

RESUMEN

There is growing interest in nanostructures interacting with living organisms. However, there are still no general rules for the design of biocompatible nanodevices. Here, we present a step towards understanding the interactions between nanostructures and living cells. We study the influence of nanomechanical stress induced by zinc oxide (ZnO) nanostructures of different shapes on the viability of both prokaryotic (Gram-negative bacteria: Escherichia coli and Enterobacter aerogenes, and Gram-positive bacteria: Staphylococcus epidermidis and Corynebacterium glutamicum) and eukaryotic cells (yeast Saccharomyces cerevisiae and liver cancer cell line HepG2). Nanoparticles (NPs) and nanorods (NRs) of matching crystallographic structure (P63mc) and active surface area (in the order of 5 × 10(-2)µm(2)) are almost non-toxic for cells under static conditions. However, under conditions that enable collisions between ZnO nanostructures and cells, NRs appear to be more damaging compared to NPs. This is due to the increased probability of mechanical damage caused by nanorods upon puncturing of the cell wall and membranes. Gram-positive bacteria, which have thicker cell walls, are more resistant to nanomechanical stress induced by NRs compared to Gram-negative strains and eukaryotic cells. The presented results may be exploited to improve the properties of nanotechnology based products such as implants, drug delivery systems, antibacterial emulsions and cosmetics.


Asunto(s)
Nanopartículas , Óxido de Zinc , Antibacterianos , Humanos , Nanotecnología , Nanotubos , Estrés Mecánico
8.
Chemistry ; 21(47): 16941-7, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26427916

RESUMEN

The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

9.
Langmuir ; 30(31): 9533-43, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25036848

RESUMEN

A facile coprecipitation reaction between Ce(3+), Gd(3+), Tb(3+), and F(-) ions, in the presence of glycerine as a capping agent, led to the formation of ultrafine, nanocrystalline CeF3:Tb(3+) 5%, Gd(3+) 5% (LnF3). The as-prepared fluoride nanoparticles were successfully coated with an amine modified silica shell. Subsequently, the obtained LnF3@SiO2@NH2 nanostructures were conjugated with 4-ethoxybenzoic acid in order to prove the possibility of organic modification and obtain a new functional nanomaterial. All of the nanophosphors synthesized exhibited intense green luminescence under UV light irradiation. Based on TEM (transmission electron microscopy) measurements, the diameters of the cores (≈12 nm) and core/shell particles (≈50 nm) were determined. To evaluate the cytotoxic activity of the nanomaterials obtained, their effect on human erythrocytes was investigated. LnF3 nanoparticles were bound to the erythrocyte membrane, without inducing any cytotoxic effects. After coating with silica, the nanoparticles revealed significant cytotoxicity. However, further functionalization of the nanomaterial with -NH2 groups as well as conjugation with 4-ethoxybenzoic acid entailed a decrease in cytotoxicity of the core/shell nanoparticles.


Asunto(s)
Eritrocitos/efectos de los fármacos , Éteres de Hidroxibenzoatos/farmacología , Elementos de la Serie de los Lantanoides/farmacología , Nanoestructuras/química , Compuestos Organometálicos/farmacología , Dióxido de Silicio/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Éteres de Hidroxibenzoatos/química , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Microscopía Electrónica de Transmisión , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Tamaño de la Partícula , Dióxido de Silicio/química , Relación Estructura-Actividad , Propiedades de Superficie
10.
Pathogens ; 13(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392890

RESUMEN

Humans have used fermentation processes since the Neolithic period, mainly to produce beverages. The turning point occurred in the 1850s, when Louis Pasteur discovered that fermentation resulted from the metabolism of living microorganisms. This discovery led to the fast development of fermented food production. The importance of industrial processes based on fermentation significantly increased. Many branches of industry rely on the metabolisms of bacteria, for example, the dairy industry (cheese, milk, yogurts), pharmaceutical processes (insulin, vaccines, antibiotics), or the production of chemicals (acetone, butanol, acetic acid). These are the mass production processes involving a large financial outlay. That is why it is essential to minimize threats to production. One major threat affecting bacteria-based processes is bacteriophage infections, causing substantial economic losses. The first reported phage infections appeared in the 1930s, and companies still struggle to fight against phages. This review shows the cases of phage infections in industry and the most common methods used to prevent phage infections.

11.
ACS Omega ; 8(26): 23706-23719, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426285

RESUMEN

The nanotechnology shift from static toward stimuli-responsive systems is gaining momentum. We study adaptive and responsive Langmuir films at the air/water interface to facilitate the creation of two-dimensional (2D) complex systems. We verify the possibility of controlling the assembly of relatively large entities, i.e., nanoparticles with diameter around 90 nm, by inducing conformational changes within an about 5 nm poly(N-isopropyl acrylamide) (PNIPAM) capping layer. The system performs reversible switching between uniform and nonuniform states. The densely packed and uniform state is observed at a higher temperature, i.e., opposite to most phase transitions, where more ordered phases appear at lower temperatures. The induced nanoparticles' conformational changes result in different properties of the interfacial monolayer, including various types of aggregation. The analysis of surface pressure at different temperatures and upon temperature changes, surface potential measurements, surface rheology experiments, Brewster angle microscopy (BAM), and scanning electron microscopy (SEM) observations are accompanied by calculations to discuss the principles of the nanoparticles' self-assembly. Those findings provide guidelines for designing other adaptive 2D systems, such as programable membranes or optical interfacial devices.

12.
EcoSal Plus ; 11(1): eesp00192022, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36651738

RESUMEN

Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.


Asunto(s)
Bacteriófagos , Virus , Enterobacteriaceae/fisiología , Bacteriófagos/fisiología , Escherichia coli , Bacterias
13.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903733

RESUMEN

Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.

14.
J Biomed Mater Res B Appl Biomater ; 111(5): 996-1004, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462180

RESUMEN

The study's main objective is to limit bacterial biofilm formation on fixed orthodontic appliances. Bacterial biofilm formation on such devices (e.g., brackets) causes enamel demineralization, referred to as white spot lesions (WSL). WSL is significant health, social and economic problem. We provide a nanotechnology-based solution utilizing a nanocomposite of gold nanoparticles embedded in a polyoxoborate matrix (BOA: B-boron, O-oxygen, A-gold, Latin aurum). The nanocomposite is fully inorganic, and the coating protocol is straightforward, effective, and ecologically friendly (low waste and water-based). Prepared coatings are mechanically stable against brushing with a toothbrush (up to 100 min of brushing). Bacteria adhesion and antibacterial properties are tested against Streptococcus mutans-common bacteria in the oral cavity. BOA reduces the adhesion of bacteria by around 78%, that is, from around 7.99 × 105  ± 1.33 × 105  CFU per bracket to 1.69 × 105  ± 3.07 × 104  CFU per bracket of S. mutans detached from unmodified and modified brackets, respectively. Modified fixed orthodontic brackets remain safe for eukaryotic cells and meet ISO 10993-5:2009 requirements for medical devices. The gathered data show that BOA deposited on orthodontic appliances provides a viable preventive measure against bacteria colonization, which presents frequent and significant complications of orthodontic treatment.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Soportes Ortodóncicos , Adhesión Bacteriana , Oro/farmacología , Soportes Ortodóncicos/microbiología , Células Eucariotas , Antibacterianos/farmacología , Streptococcus mutans
15.
Nanoscale Adv ; 5(21): 5786-5798, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37881701

RESUMEN

The sale of antibiotics and antifungals has skyrocketed since 2020. The increasing threat of pathogens like ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), which are effective in evading existing antibiotics, and yeasts like Candida auris or Cryptococcus neoformans is pressing to develop efficient antimicrobial alternatives. Nanoparticles, especially silver nanoparticles (AgNPs), are believed to be promising candidates to supplement or even replace antibiotics in some applications. Here, we propose a way to increase the antimicrobial efficiency of silver nanoparticles by using tea extracts (black, green, or red) for their synthesis. This allows for using lower concentrations of nanoparticles and obtaining the antimicrobial effect in a short time. We found that AgNPs synthesized using green tea extract (G-TeaNPs) are the most effective, causing approximately 80% bacterial cell death in Gram-negative bacteria within only 3 hours at a concentration of 0.1 mg mL-1, which is better than antibiotics. Ampicillin at the same concentration (0.1 mg mL-1) and within the same duration (3 h) causes only up to 40% decrease in the number of S. aureus and E. cloacae cells (non-resistant strains). The tested silver nanoparticles also have antifungal properties and are effective against C. auris and C. neoformans, which are difficult to eradicate using other means. We established that silver nanoparticles synthesized with tea extracts have higher antibacterial properties than silver nanoparticles alone. Such formulations using inexpensive tea extracts and lower concentrations of silver nanoparticles show a promising solution to fight various pathogens.

16.
J Environ Qual ; 52(3): 665-677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36785877

RESUMEN

The objective of this study is to explore the effects of microplastics on the viability of the bacteriophages in an aqueous environment. Bacteriophages (phages), that is, viruses of bacteria, are essential in homeostasis. It is estimated that phages cause up to 40% of the death of all bacteria daily. Any factor affecting phage activity is vital for the whole food chain and the ecology of numerous niches. We hypothesize that the number of active phages decreases due to the virions' adsorption on microplastic particles or by the released leachables from additives used in the production of plastic, for example, stabilizers, plasticizers, colorants, and reinforcements. We exposed three diverse phages, namely, T4 (tailed), MS2 (icosahedral), and M13 (filamentous), to 1 mg/mL suspension of 12 industrial-grade plastics [acrylonitrile butadiene styrene, high-impact polystyrene, poly-ε-caproamide, polycarbonate, polyethylene, polyethylene terephthalate, poly(methyl methacrylate), polypropylene, polystyrene, polytetrafluoroethylene, polyurethane, and polyvinyl chloride] shredded to obtain microparticles of radius ranging from 2 to 50 µm. The effect of leachables was measured upon exposure of phages not to particles themselves but to the buffer preincubated with microplastics. A double-overlay plaque counting method was used to assess phage titers. We employed a classical linear regression model to verify which physicochemical parameters (65 variables were tested) govern the decrease of phage titers. The key finding is that adsorption mechanisms result in up to complete scavenging of virions, whereas leachables deactivate up to 50% of phages. This study reveals microplastic pollution's plausible and unforeseen ecotoxicological effect causing phage deactivation. Moreover, phage transmission through adsorption can alter the balance of the food chain in the new environment. The effect depends mainly on the zeta potentials of the polymers and the phage type.


Asunto(s)
Bacteriófagos , Bacteriófagos/fisiología , Microplásticos , Plásticos , Poliestirenos , Bacterias , Virión
17.
Phys Chem Chem Phys ; 14(41): 14365-73, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23010668

RESUMEN

We developed a simple method for preparation of well-defined films of X-, T- and anchor-shaped bolaamphiphiles. The compounds were judiciously chosen to investigate the influence of the general molecular structure on the self-assembly properties. Precisely calculated (on the basis of Langmuir π(A) isotherms) volumes of chloroform solutions of the compounds of known concentrations were spread (drop-casted) directly onto the surface of water or silicon wafer. During the solvent evaporation, regular thin films were spontaneously formed. With use of the drop-casting (DC) method, films of thickness of up to three molecular layers could be obtained. X-ray reflectivity (XRR) measurements gave insight into arrangement of the molecules within the films. Different models of molecular organisation in the films were confronted with the experimental results. Advanced fitting procedures allowed for precise determination of the structure of the films. Comparison of films of different compounds obtained using different methods (Langmuir-Blodgett, DC) allowed for a deeper insight into the process of self-assembly, providing guidelines for designing functional molecules spontaneously forming thin, regular films. The proposed DC procedure is a novel alternative to broadly used self-assembled monolayers (SAMs). Unlike SAMs, our method does not require specific molecule-surface interactions and allows formation of films thicker than a monolayer.

18.
Pharmaceutics ; 14(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36145682

RESUMEN

Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.

19.
Viruses ; 14(5)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35632609

RESUMEN

Bacteriophages are viruses that attack and usually kill bacteria. Their appearance in the industrial facilities using bacteria to produce active compounds (e.g., drugs, food, cosmetics, etc.) causes considerable financial losses. Instances of bacteriophage resistance towards disinfectants and decontamination procedures (such as thermal inactivation and photocatalysis) have been reported. There is a pressing need to explore new ways of phage inactivation that are environmentally neutral, inexpensive, and more efficient. Here, we study the effect of zero-valent iron nanoparticles (nZVI) on four different bacteriophages (T4, T7, MS2, M13). The reduction of plaque-forming units (PFU) per mL varies from greater than 7log to around 0.5log depending on bacteriophages (M13 and T7, respectively). A comparison of the importance of oxidation of nZVI versus the release of Fe2+/Fe3+ ions is shown. The mechanism of action is proposed in connection to redox reactions, adsorption of virions on nZVI, and the effect of released iron ions. The nZVI constitutes a critical addition to available antiphagents (i.e., anti-bacteriophage agents).


Asunto(s)
Bacteriófagos , Nanopartículas , Adsorción , Iones , Hierro
20.
Chemistry ; 17(21): 5861-73, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21480406

RESUMEN

Aggregation in Langmuir films is usually understood as being a disorderly grouping of molecules turning into chaotic three-dimensional aggregates and is considered an unwanted phenomenon causing irreversible changes. In this work we present the studies of 11 compounds from the group of specific surfactants, known as bolaamphiphiles, that exhibit reversible aggregation and, in many cases, transition to well-defined multilayers, which can be considered as a layering transition. These bolaamphiphiles incorporate rigid π-conjugated aromatics as hydrophobic cores, glycerol-based polar groups and hydrophobic lateral chains. Molecules of different shapes (X-, T-, and anchor) were studied and compared. The key property of these compounds is the partial fluorination of the lateral chains linked to the rigid cores of the molecules. The most interesting feature of the compounds is that, depending on their shape and degree of fluorination, they are able to resist aggregation and preserve a monolayer structure up to relatively high surface pressures (T-shaped and some X-shaped molecules), or create well-defined trilayers (X- and anchor-shaped molecules). Experimental studies were performed using Langmuir balance, surface potential and X-ray reflectivity measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA