RESUMEN
Hematopoiesis is a continuous phenomenon involving the formation of hematopoietic stem cells (HSCs) giving rise to diverse functional blood cells. This developmental process of hematopoiesis is evolutionarily conserved, yet comparably different in various model organisms. Vertebrate HSCs give rise to all types of mature cells of both the myeloid and the lymphoid lineages sequentially colonizing in different anatomical tissues. Signal transduction in HSCs facilitates their potency and specifies branching of lineages. Understanding the hematopoietic signaling pathways is crucial to gain insights into their deregulation in several blood-related disorders. The focus of the review is on hematopoiesis corresponding to different model organisms and pivotal role of indispensable hematopoietic pathways. We summarize and discuss the fundamentals of blood formation in both invertebrate and vertebrates, examining the requirement of key signaling nexus in hematopoiesis. Knowledge obtained from such comparative studies associated with developmental dynamics of hematopoiesis is beneficial to explore the therapeutic options for hematopoietic diseases.
Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal/fisiología , Animales , Modelos Animales de Enfermedad , HumanosRESUMEN
Endocannabinoids are well-known regulators of neurotransmission by activating the cannabinoid (CB) receptors. Endocannabinoids are being used extensively for the treatment of various neurological disorders such as Alzheimer's and Parkinson's diseases. Although endocannabinoids are well studied in cell survival, proliferation, and differentiation in various neurological disorders and several cancers, the functional role in the regulation of blood cell development is less examined. In the present study, virodhamine, which is an agonist of CB receptor-2, was used to examine its effect on megakaryocytic development from a megakaryoblastic cell. We observed that virodhamine increases cell adherence, cell size, and cytoplasmic protrusions. Interestingly, we have also observed large nucleus and increased expression of megakaryocytic marker (CD61), which are the typical hallmarks of megakaryocytic differentiation. Furthermore, the increased expression of CB2 receptor was noticed in virodhamine-induced megakaryocytic cells. The effect of virodhamine on megakaryocytic differentiation could be mediated through CB2 receptor. Therefore, we have studied virodhamine induced molecular regulation of megakaryocytic differentiation; mitogen-activated protein kinase (MAPK) activity, mitochondrial function, and reactive oxygen species (ROS) production were majorly affected. The altered mitochondrial functions and ROS production is the crucial event associated with megakaryocytic differentiation and maturation. In the present study, we report that virodhamine induces megakaryocytic differentiation by triggering MAPK signaling and ROS production either through MAPK effects on ROS-generating enzymes or by the target vanilloid receptor 1-mediated regulation of mitochondrial function.
Asunto(s)
Endocannabinoides/metabolismo , Hematopoyesis/genética , Receptor Cannabinoide CB2/genética , Canales Catiónicos TRPV/genética , Ácidos Araquidónicos/metabolismo , Cannabinoides/farmacología , Adhesión Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Endocannabinoides/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/efectos de los fármacos , Humanos , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Cannabinoide CB1RESUMEN
Epidemiologic studies have linked the use of aspirin to a decline in chronic inflammation that underlies many human diseases, including some cancers. Aspirin reduces the levels of cyclooxygenase-mediated pro-inflammatory prostaglandins, promotes the production of pro-resolution molecules, and triggers the production of anti-inflammatory electrophilic mono-oxygenated (EFOX) lipid mediators. We investigated the effects of aspirin in fruit fly models of chronic inflammation. Ectopic Toll/NF-κB and JAK/STAT signaling in mutant D. melanogaster results in overproliferation of hematopoietic blood progenitors resulting in the formation of granuloma-like tumors. Ectopic JAK-STAT signaling also leads to metabolic inflammation. We report that aspirin-treated mutant flies experience reduction in metabolic inflammation, mitosis, ectopic immune signaling, and macrophage infiltration. Moreover, these flies synthesize 13-HODE, and aspirin triggers 13-oxoODE (13-EFOX-L2) production. Providing the precursor of 13-HODE, linoleic acid, or performing targeted knockdown of the transcription factor STAT in inflammatory blood cells, boosts 13-EFOX-L2 levels while decreasing metabolic inflammation. Thus, hematopoietic cells regulate metabolic inflammation in flies, and their effects can be reversed by pharmaceutical or dietary intervention, suggesting deep phylogenetic conservation in the ability of animals to resolve inflammation and repair tissue damage. These findings can help identify novel treatment targets in humans.
Asunto(s)
Aspirina/farmacología , Proteínas de Drosophila/metabolismo , Inflamación/genética , Quinasas Janus/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Eicosanoides/farmacología , Femenino , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación , Quinasas Janus/genética , Macrófagos/metabolismo , Masculino , FN-kappa B/genética , Filogenia , Transducción de Señal , Factores de Transcripción/genéticaRESUMEN
Proper genetic and epigenetic regulation is necessary to maintain the identity and integrity of cells. Enzymes involved in post-transcriptional modifications of histones are key factors in epigenetic mechanisms. Such modifications are also gaining importance for their role in growth and development of cancer. SETDB1 catalyzes the epigenetic mark of lysine-9 methylation of histone-3. In this study, we explored the role of SETDB1 in Drosophila hematopoiesis. We show that SETDB1 controls the differentiation of matured blood cells in wandering third instar larvae. There are three matured blood cells in wild type Drosophila melanogaster: plasmatocytes, crystal cells and lamellocytes. We found that loss-of-function mutants of SETDB1 show hematopoietic defects; increased blood cell proliferation, decreased number of crystal cells, greater differentiation of blood cells into lamellocytes, dysplasia of the anterior lobes of lymph gland and presence of hematopoietic tumors. Cell type specific knockdown of SETDB1 provided similar phenotype i.e., decreased number of crystal cells and an increase in lamellocyte differentiation. In animals with loss of function of SETDB1, Notch pathway was downregulated. Further, over-expression of SETDB1 in blood cells resulted in an increase in the number of crystal cells. This increase is accompanied with an increase in the number of NotchICD expressing cells. We therefore performed genetic rescue using UAS-GAL4 system to rescue loss of function SETDB1 mutants. Our data show that the rescued larvae carrying a wild type copy of SETDB1 in mutant background are devoid of blood tumors. We have identified a novel dual function of SETDB1 methylatransferase as a critical regulator of two of the matured hemocytes, crystal cells and lamellocytes. We propose a novel role of SETDB1 in modulating the differentiation of crystal cells and lamellocytes from a common progenitor and underscore the importance of SETDB1 in Drosophila blood tumor suppression.
Asunto(s)
Proteínas de Drosophila/metabolismo , Hematopoyesis/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigénesis Genética/genética , Hematopoyesis/genética , Hemocitos/citología , N-Metiltransferasa de Histona-Lisina/genética , Larva/metabolismo , Transducción de SeñalRESUMEN
Megakaryocytes (MKs), the largest cells in the bone marrow, are generated from hematopoietic stem cells (HSCs) in a sequential process called megakaryocytopoiesis in which HSCs undergo MK-progenitor (MP) commitment and maturation to terminally differentiated MK. Megakaryocytopoiesis is controlled by a complex network of bone marrow niche factors. Traditionally, the studies on megakaryocytopoiesis were focused on different cytokines, growth factors and transcription factors as the regulators of megakaryocytopoiesis. Over the past two decades many research groups have uncovered the key role of microRNAs (miRNAs) in megakaryocytopoiesis. miRNAs are a class of small length non-coding RNAs which play key regulatory role in cellular processes such as proliferation, differentiation and development and are also known to be involved in disease development. This review summarizes the current state of knowledge of miRNAs which have changed expression during megakaryocytopoiesis, also focuses on miRNAs which are differentially regulated during developmental maturation of MKs. Further, we aimed to discuss potential mechanisms of miRNAs-mediated regulation underlying megakaryocytopoiesis and developmental maturation of MKs.
Asunto(s)
Megacariocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Trombopoyesis/genética , Diferenciación Celular , HumanosRESUMEN
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9â» defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into developing novel strategies for medical and agricultural pest control.
Asunto(s)
Drosophila/inmunología , Homeostasis/inmunología , Inflamación/etiología , Sumoilación/inmunología , Avispas/inmunología , Animales , Drosophila/parasitología , Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata , Larva/inmunología , Larva/parasitología , FN-kappa B/genética , Transcripción Genética , Avispas/parasitologíaRESUMEN
Drosophila is a valuable paradigm for studying tumorigenesis and cancer. Mutations causing hematopoietic aberrations and melanotic-blood-tumors found in Drosophila mutants are vastly studied. Clear understanding about the blood cells, signaling pathways and the tissues affected during hematopoietic tumor formation provide an opportunity to delineate the effects of cancer therapeutics. Using this simple hematopoietic archetype, we elucidated the effects of the anti-cancer drug, Methotrexate (MTX) on immune responses in two scenarios i.e. against wasp infection and in hematopoietic mutant, hopTum-l. Through this in vivo study we show that MTX impedes the immune responses against wasp infection including the encapsulation response. We further observed that MTX reduces the tumor penetrance in gain-of-function mutants of JAK/STAT pathway, hopTum-l. MTX is anti-inflammatory as it hinders not only the immune responses of acute inflammation as observed after wasp infestation, but also chronic inflammatory responses associated with constitutively activated JAK/STAT pathway mutant (hopTum-l) carrying blood tumors.
Asunto(s)
Drosophila melanogaster/inmunología , Hemocitos/fisiología , Inmunidad/efectos de los fármacos , Metotrexato/farmacología , Avispas/fisiología , Animales , Animales Modificados Genéticamente , Carcinogénesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/parasitología , Sistema Hematopoyético , Quinasas Janus/metabolismo , Larva , Mutación/genética , Factores de Transcripción STAT/metabolismo , Transducción de SeñalRESUMEN
The endocannabinoid system (ECS) is a complex physiological network involved in creating homeostasis and maintaining human health. Studies of the last 40 years have shown that endocannabinoids (ECs), a group of bioactive lipids, together with their set of receptors, function as one of the most important physiologic systems in human body. ECs and cannabinoid receptors (CBRs) are found throughout the body: in the brain tissues, immune cells, and in the peripheral organs and tissues as well. In recent years, ECs have emerged as key modulators of affect, neurotransmitter release, immune function, and several other physiological functions. This modulatory homoeostatic system operates in the regulation of brain activity and states of physical health and disease. In several research studies and patents the ECS has been recognised with neuro-protective properties thus it might be a target in neurodegenerative diseases. Most immune cells express these bioactive lipids and their receptors, recent data also highlight the immunomodulatory effects of endocannabinoids. Interplay of immune and nervous system has been recognized in past, recent studies suggest that ECS function as a bridge between neuronal and immune system. In several ongoing clinical trial studies, the ECS has also been placed in the anti-cancer drugs spotlight. This review summarizes the literature of cannabinoid ligands and their biosynthesis, cannabinoid receptors and their distribution, and the signaling pathways initiated by the binding of cannabinoid ligands to cannabinoid receptors. Further, this review highlights the functional role of cannabinoids and ECS in blood cell development, neuroimmune interactions and associated disorders. Moreover, we highlight the current state of knowledge of cannabinoid ligands as the mediators of neuroimmune interactions, which can be therapeutically effective for neuro-immune disorders and several diseases associated with neuroinflammation.
Asunto(s)
Endocannabinoides/fisiología , Hematopoyesis/fisiología , Neuroinmunomodulación/fisiología , Animales , Homeostasis/fisiología , Humanos , Receptores de Cannabinoides/metabolismoRESUMEN
While there exist some long non-coding RNAs (lncRNAs) that are structurally similar to mRNAs (capped, spliced, poly a tail), not all of the lncRNAs exhibit these features. Structurally, lncRNAs are classified under the regulatory non-coding RNAs category these lncRNA molecules operate as signals, decoys, guides, and scaffolds. In eukaryotes, lncRNAs are transcribed by RNA Polymerase II and RNA Polymerase III at several loci of the genome. Unlike other protein-coding mRNAs, lncRNAs exhibit functional uniqueness by participating in and modulating the various cellular processes such as, histone modification, DNA methylation, and cellular transcription (Wei et al., 2017). LncRNA alters chromatin structure and DNA accessibility, thereby regulating patterns of gene expression (Wang et al., 2011b). Disordered lncRNA with quantitative or qualitative alterations lead to the progression of numerous diseases including blood associated diseases. LncRNAs not only regulate lineage commitment such as cardiovascular lineage but also contribute for the hematopoietic stem cell development with a significant role in myeloid and lymphoid lineage commitment. However, the key molecular functions of lncRNAs in hematopoiesis are still unclear, particularly, their functional role during megakaryocyte development from hematopoietic stem cells (HSCs) is largely unexplored. This review summarizes the current status of knowledge on lncRNAs classification, biogenesis and its role in blood cells.
Asunto(s)
Células Sanguíneas/fisiología , ARN Largo no Codificante/genética , Animales , Metilación de ADN/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Humanos , ARN Mensajero/genéticaRESUMEN
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9(wt) is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
RESUMEN
Most known parasitoid wasp species attack the larval or pupal stages of Drosophila. While Trichopria drosophilae infect the pupal stages of the host (Fig. 1A-C), females of the genus Leptopilina (Fig. 1D, 1F, 1G) and Ganaspis (Fig. 1E) attack the larval stages. We use these parasites to study the molecular basis of a biological arms race. Parasitic wasps have tremendous value as biocontrol agents. Most of them carry virulence and other factors that modify host physiology and immunity. Analysis of Drosophila wasps is providing insights into how species-specific interactions shape the genetic structures of natural communities. These studies also serve as a model for understanding the hosts' immune physiology and how coordinated immune reactions are thwarted by this class of parasites. The larval/pupal cuticle serves as the first line of defense. The wasp ovipositor is a sharp needle-like structure that efficiently delivers eggs into the host hemocoel. Oviposition is followed by a wound healing reaction at the cuticle (Fig. 1C, arrowheads). Some wasps can insert two or more eggs into the same host, although the development of only one egg succeeds. Supernumerary eggs or developing larvae are eliminated by a process that is not yet understood. These wasps are therefore referred to as solitary parasitoids. Depending on the fly strain and the wasp species, the wasp egg has one of two fates. It is either encapsulated, so that its development is blocked (host emerges; Fig. 2 left); or the wasp egg hatches, develops, molts, and grows into an adult (wasp emerges; Fig. 2 right). L. heterotoma is one of the best-studied species of Drosophila parasitic wasps. It is a "generalist," which means that it can utilize most Drosophila species as hosts. L. heterotoma and L. victoriae are sister species and they produce virus-like particles that actively interfere with the encapsulation response. Unlike L. heterotoma, L. boulardi is a specialist parasite and the range of Drosophila species it utilizes is relatively limited. Strains of L. boulardi also produce virus-like particles although they differ significantly in their ability to succeed on D. melanogaster. Some of these L. boulardi strains are difficult to grow on D. melanogaster as the fly host frequently succeeds in encapsulating their eggs. Thus, it is important to have the knowledge of both partners in specific experimental protocols. In addition to barrier tissues (cuticle, gut and trachea), Drosophila larvae have systemic cellular and humoral immune responses that arise from functions of blood cells and the fat body, respectively. Oviposition by L. boulardi activates both immune arms. Blood cells are found in circulation, in sessile populations under the segmented cuticle, and in the lymph gland. The lymph gland is a small hematopoietic organ on the dorsal side of the larva. Clusters of hematopoietic cells, called lobes, are arranged segmentally in pairs along the dorsal vessel that runs along the anterior-posterior axis of the animal (Fig. 3A). The fat body is a large multifunctional organ (Fig. 3B). It secretes antimicrobial peptides in response to microbial and metazoan infections. Wasp infection activates immune signaling (Fig. 4). At the cellular level, it triggers division and differentiation of blood cells. In self defense, aggregates and capsules develop in the hemocoel of infected animals (Fig. 5). Activated blood cells migrate toward the wasp egg (or wasp larva) and begin to form a capsule around it (Fig. 5A-F). Some blood cells aggregate to form nodules (Fig. 5G-H). Careful analysis reveals that wasp infection induces the anterior-most lymph gland lobes to disperse at their peripheries (Fig. 6C, D). We present representative data with Toll signal transduction pathway components Dorsal and Spätzle (Figs. 4,5,7), and its target Drosomycin (Fig. 6), to illustrate how specific changes in the lymph gland and hemocoel can be studied after wasp infection. The dissection protocols described here also yield the wasp eggs (or developing stages of wasps) from the host hemolymph (Fig. 8).
Asunto(s)
Drosophila/inmunología , Drosophila/parasitología , Avispas/inmunología , Animales , Femenino , Interacciones Huésped-Parásitos/inmunologíaRESUMEN
Viruses and virus-like particles (VLPs) of insect parasitoids modify host-parasite interactions. The Drosophila wasp, Leptopilina heterotoma, produce 300 nm spiked VLPs that bind to the host's blood cells via surface projections. L. heterotoma is a generalist wasp that attacks over a dozen Drosophila species. Oviposition introduces VLPs into the hemolymph of Drosophila larvae. VLPs lyse hemocytes and obliterate immune signaling in infected larval hosts. L. boulardi, a member of a distinct Leptopilina clade, is a specialist, whose host range is limited to the melanogaster group. As a step toward understanding a potential relationship between venom contents and host range in these wasps, we used electron microscopy to characterize VLPs from the virulent L. boulardi-17 (Lb-17) strain. While the Lb-17 VLPs can neither lyse blood cells nor suppress host defense, their biogenesis is surprisingly similar to that of L. heterotoma. Like L. heterotoma VLPs, L. boulardi VLPs are stellate; but they have fewer spikes, each spike being significantly longer than the spikes in L. heterotoma VLPs. The Lb-17 VLPs possess a dimple, making them clearly distinct from L. heterotoma VLPs. We discuss the significance of these cross-clade differences in VLP morphologies in relation to their biological activities and the host range of the wasp.
Asunto(s)
Heterópteros/virología , Himenópteros/virología , Virosomas/metabolismo , Virosomas/ultraestructura , Animales , Drosophila/parasitología , Drosophila/virología , Microscopía Electrónica , FilogeniaRESUMEN
While microarray experiments generate voluminous data, discerning trends that support an existing or alternative paradigm is challenging. To synergize hypothesis building and testing, we designed the Pathogen Associated Drosophila MicroArray (PADMA) database for easy retrieval and comparison of microarray results from immunity-related experiments (www.padmadatabase.org). PADMA also allows biologists to upload their microarray-results and compare it with datasets housed within PADMA. We tested PADMA using a preliminary dataset from Ganaspis xanthopoda-infected fly larvae, and uncovered unexpected trends in gene expression, reshaping our hypothesis. Thus, the PADMA database will be a useful resource to fly researchers to evaluate, revise, and refine hypotheses.
Asunto(s)
Bases de Datos Genéticas , Proteínas de Drosophila/genética , Drosophila/genética , Animales , Biología Computacional , Inmunidad Innata/genética , Análisis de Secuencia por Matrices de OligonucleótidosRESUMEN
To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range.