Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501779

RESUMEN

The Action Research Arm Test (ARAT) presents a ceiling effect that prevents the detection of improvements produced with rehabilitation treatments in stroke patients with mild finger joint impairments. The aim of this study was to develop classification models to predict whether activities with similar ARAT scores were performed by a healthy subject or by a subject post-stroke using the extension and flexion angles of 11 finger joints as features. For this purpose, we used three algorithms: Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN). The dataset presented class imbalance, and the classification models presented a low recall, especially in the stroke class. Therefore, we implemented class balance using Borderline-SMOTE. After data balancing the classification models showed significantly higher accuracy, recall, f1-score, and AUC. However, after data balancing, the SVM classifier showed a higher performance with a precision of 98%, a recall of 97.5%, and an AUC of 0.996. The results showed that classification models based on human hand motion features in combination with the oversampling algorithm Borderline-SMOTE achieve higher performance. Furthermore, our study suggests that there are differences in ARAT activities performed between healthy and post-stroke individuals that are not detected by the ARAT scoring process.


Asunto(s)
Accidente Cerebrovascular , Extremidad Superior , Humanos , Mano , Máquina de Vectores de Soporte , Algoritmos , Investigación sobre Servicios de Salud
2.
Sensors (Basel) ; 22(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35632013

RESUMEN

The Action Research Arm Test (ARAT) can provide subjective results due to the difficulty assessing abnormal patterns in stroke patients. The aim of this study was to identify joint impairments and compensatory grasping strategies in stroke patients with left (LH) and right (RH) hemiparesis. An experimental study was carried out with 12 patients six months after a stroke (three women and nine men, mean age: 65.2 ± 9.3 years), and 25 healthy subjects (14 women and 11 men, mean age: 40.2 ± 18.1 years. The subjects were evaluated during the performance of the ARAT using a data glove. Stroke patients with LH and RH showed significantly lower flexion angles in the MCP joints of the Index and Middle fingers than the Control group. However, RH patients showed larger flexion angles in the proximal interphalangeal (PIP) joints of the Index, Middle, Ring, and Little fingers. In contrast, LH patients showed larger flexion angles in the PIP joints of the Middle and Little fingers. Therefore, the results showed that RH and LH patients used compensatory strategies involving increased flexion at the PIP joints for decreased flexion in the MCP joints. The integration of a data glove during the performance of the ARAT allows the detection of finger joint impairments in stroke patients that are not visible from ARAT scores. Therefore, the results presented are of clinical relevance.


Asunto(s)
Articulaciones de los Dedos , Fuerza de la Mano , Adulto , Anciano , Femenino , Investigación sobre Servicios de Salud , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Adulto Joven
3.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35590966

RESUMEN

The Action Research Arm Test (ARAT) is a standardized outcome measure that can be improved by integrating sensors for hand motion analysis. The purpose of this study is to measure the flexion angle of the finger joints and fingertip forces during the performance of three subscales (Grasp, Grip, and Pinch) of the ARAT, using a data glove (CyberGlove II®) and five force-sensing resistors (FSRs) simultaneously. An experimental study was carried out with 25 healthy subjects (right-handed). The results showed that the mean flexion angles of the finger joints required to perform the 16 activities were Thumb (Carpometacarpal Joint (CMC) 28.56°, Metacarpophalangeal Joint (MCP) 26.84°, and Interphalangeal Joint (IP) 13.23°), Index (MCP 46.18°, Index Proximal Interphalangeal Joint (PIP) 38.89°), Middle (MCP 47.5°, PIP 42.62°), Ring (MCP 44.09°, PIP 39.22°), and Little (MCP 31.50°, PIP 22.10°). The averaged fingertip force exerted in the Grasp Subscale was 8.2 N, in Grip subscale 6.61 N and Pinch subscale 3.89 N. These results suggest that the integration of multiple sensors during the performance of the ARAT has clinical relevance, allowing therapists and other health professionals to perform a more sensitive, objective, and quantitative assessment of the hand function.


Asunto(s)
Articulaciones de los Dedos , Articulación Metacarpofalángica , Fuerza de la Mano , Investigación sobre Servicios de Salud , Humanos , Rango del Movimiento Articular , Pulgar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA