Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2215922120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307451

RESUMEN

Colloidal gelation is used to form processable soft solids from a wide range of functional materials. Although multiple gelation routes are known to create gels of different types, the microscopic processes during gelation that differentiate them remain murky. A fundamental question is how the thermodynamic quench influences the microscopic driving forces of gelation, and determines the threshold or minimal conditions where gels form. We present a method that predicts these conditions on a colloidal phase diagram, and mechanistically connects the quench path of attractive and thermal forces to the emergence of gelled states. Our method employs systematically varied quenches of a colloidal fluid over a range of volume fractions to identify minimal conditions for gel solidification. The method is applied to experimental and simulated systems to test its generality toward attractions with varied shapes. Using structural and rheological characterization, we show that all gels incorporate elements of percolation, phase separation, and glassy arrest, where the quench path sets their interplay and determines the shape of the gelation boundary. We find that the slope of the gelation boundary corresponds to the dominant gelation mechanism, and its location approximately scales with the equilibrium fluid critical point. These results are insensitive to potential shape, suggesting that this interplay of mechanisms is applicable to a wide range of colloidal systems. By resolving regions of the phase diagram where this interplay evolves in time, we elucidate how programmed quenches to the gelled state could be used to effectively tailor gel structure and mechanics.

2.
Soft Matter ; 17(3): 758-768, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33232430

RESUMEN

The phase behavior of non-frustrated ABC block copolymers polymers, modeling poly(isoprene-b-styrene-b-ethylene oxide) (ISO), is studied using dissipative particle dynamic (DPD) simulations. The phase diagram showed a wide composition range for the alternating gyroid morphology, which can be transformed to a chiral metamaterial. A quantitative analysis of topology was developed, that correlates the location of a block relative to the interface with the block's end-to-end distance. This analysis showed that the A-blocks stretched as they were located deeper in the A-rich region. To further expand the stability of the alternating gyroid phase, A-selective homopolymers of different lengths were co-assembled with the ABC copolymer at several compositions. Topological analysis showed that homopolymers with lengths shorter than or equal to the A-block length filled the middle of the networks, decreasing packing frustration and stabilizing them, while longer homopolymers stretched across the network but allowed for the formation of stable, novel morphologies. Adding homopolymers to triblock copolymer melts increases tunability of the network, offering greater control over the final stable phase and bridging two separate regions in the phase diagram.

3.
Soft Matter ; 14(17): 3265-3287, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29637976

RESUMEN

Delayed gravitational collapse of colloidal gels is characterized by initially slow compaction that gives way to rapid bulk collapse, posing interesting questions about the underlying mechanistic origins. Here we study gel collapse utilizing large-scale dynamic simulation of a freely draining gel of physically bonded particles subjected to gravitational forcing. The hallmark regimes of collapse are recovered: slow compaction, transition to rapid collapse, and long-time densification. Microstructural changes are monitored by tracking particle positions, coordination number, and bond dynamics, along with volume fraction, osmotic pressure, and potential energy. Together these reveal the surprising result that collapse can occur with a fully intact network, where the tipping point arises when particle migration dissolves strands in a capillary-type instability. While it is possible for collapse to rupture a gel network into clusters that then sediment, and hydrodynamic interactions can make interesting contributions, neither is necessary. Rather, we find that the "delay" arises from gravity-enhanced coarsening, which triggers the re-emergence of phase separation. The mechanism of this transition is a leap toward lower potential energy of the gel, driven by bulk negative osmotic pressure that condenses the particle phase: the gel collapses in on itself under negative osmotic pressure allowing the gel, to tunnel through the equilibrium phase diagram to a higher volume fraction "state". Remarkably, collapse stops when condensation stops, when gravitational advection produces a positive osmotic pressure, re-arresting the gel.

4.
Soft Matter ; 13(45): 8542-8555, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29095474

RESUMEN

T-shaped bolaamphiphiles (TBA) with a swallow-tail lateral chain have been found to provide a fertile platform to produce complex liquid crystalline phases that are accessible through changes of temperature and lateral chain length and design. In this work, we use molecular simulations of a simple coarse-grained model to map out the phase behavior of this type of molecules. This model is based on the premise that the crucial details of the fluid structure stem from close range repulsions and the strong directional forces typical of hydrogen bonds. Our simulations confirm that TBAs exhibit a rich phase behavior upon increasing the length of their lateral chain. The simulations detect a double gyroid phase and an axial-bundle columnar phase which bear some structural resemblance to those found in the experiment. In addition, simulations predict two cocontinuous phases with 3D-periodicity: the "single" diamond and the "single" plumber's nightmare phase. Our analysis of energetic and entropic contributions to the free energy of phases formed by TBA with either swallow-tail or linear side-chains suggest that the 3D-periodic network phases formed by the former are stabilized by the large conformation entropy of the side-chains.

5.
J Chem Theory Comput ; 20(4): 1547-1558, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37773005

RESUMEN

Chiral building blocks have the ability to self-assemble and transfer chirality to larger hierarchical length scales, which can be leveraged for the development of novel nanomaterials. Chiral block copolymers, where one block is made completely chiral, are prime candidates for studying this phenomenon, but fundamental questions regarding the self-assembly are still unanswered. For one, experimental studies using different chemistries have shown unexplained diverging shifts in the order-disorder transition temperature. In this study, particle-based molecular simulations of chiral block copolymers in the disordered melt were performed to uncover the thermodynamic behavior of these systems. A wide range of helical models were selected, and several free energy calculations were performed. Specifically, we aimed to understand (1) the thermodynamic impact of changing the conformation of one block in chemically identical block copolymers and (2) the effect of the conformation on the Flory-Huggins interaction parameter, χ, when chemical disparity was introduced. We found that the effective block repulsion exhibits diverging behavior, depending on the specific conformational details of the helical block. Commonly used conformational metrics for flexible or stiff block copolymers do not capture the effective block repulsion because helical blocks are semiflexible and aspherical. Instead, pitch can quantitatively capture the effective block repulsion. Quite remarkably, the shift in χ for chemically dissimilar block copolymers can switch sign with small changes in the pitch of the helix.

6.
J Chem Phys ; 136(23): 234905, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22779617

RESUMEN

Pure diblock copolymer melts exhibit a narrow range of conditions at which bicontinuous and cocontinuous phases are stable; such conditions and the morphology of such phases can be tuned by the use of additives. In this work, we have studied a bidisperse system of diblock copolymers using theory and simulation. In particular, we elucidated how a short, lamellar-forming diblock copolymer modifies the phase behavior of a longer, cylinder-forming diblock copolymer. In a narrow range of intermediate compositions, self-consistent field theory predicts the formation of a gyroid phase although particle-based simulations show that three phases compete: the gyroid phase, a disordered cocontinuous phase, and the cylinder phase, all having free energies within error bars of each other. Former experimental studies of a similar system have yielded an unidentified, partially irregular bicontinuous phase, and our simulations suggest that at such conditions the formation of a partially transformed network phase is indeed plausible. Close examination of the spatial distribution of chains reveals that packing frustration (manifested by chain stretching and low density spots) occurs in the majority-block domains of the three competing phases simulated. In all cases, a double interface around the minority-block domains is also detected with the outer one formed by the short chains, and the inner one formed by the longer chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA