Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 18(22): 4350-6, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19690088

RESUMEN

The conserved oligomeric Golgi (COG) complex is a tethering factor composed of eight subunits that is involved in the retrograde transport of intra-Golgi components. Deficient biosynthesis of COG subunits leads to alterations of protein trafficking along the secretory pathway and thereby to severe diseases in humans. Since the COG complex affects the localization of several Golgi glycosyltransferase enzymes, COG deficiency also leads to defective protein glycosylation, thereby explaining the classification of COG deficiencies as forms of congenital disorders of glycosylation (CDG). To date, mutations in COG1, COG4, COG7 and COG8 genes have been associated with diseases, which range from severe multi-organ disorders to moderate forms of neurological impairment. In the present study, we describe a new type of COG deficiency related to a splicing mutation in the COG5 gene. Sequence analysis in the patient identified a homozygous intronic substitution (c.1669-15T>C) leading to exon skipping and severely reduced expression of the COG5 protein. This defect was associated with a mild psychomotor retardation with delayed motor and language development. Analysis of different serum glycoproteins revealed a CDG phenotype with typical undersialylation of N- and O-glycans. Retrograde Golgi-to-endoplasmic reticulum trafficking was markedly delayed in the patient's fibroblast upon brefeldin-A treatment, which is a hallmark of COG deficiency. This trafficking delay could be restored to normal values by expressing a wild-type COG5 cDNA in the patient cells. This case demonstrates that COG deficiency and thereby CDG must be taken into consideration even in children presenting mild neurological impairments.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Errores Innatos del Metabolismo/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Adolescente , Células Cultivadas , Niño , Femenino , Fibroblastos/metabolismo , Glicosilación , Humanos , Errores Innatos del Metabolismo/genética , Mutación , Empalme del ARN
2.
Mol Cell Proteomics ; 6(12): 2132-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17823199

RESUMEN

Congenital disorders of glycosylation (CDGs) are a family of N-linked glycosylation defects associated with severe clinical manifestations. In CDG type-I, deficiency of lipid-linked oligosaccharide assembly leads to the underoccupancy of N-glycosylation sites on glycoproteins. Although the level of residual glycosylation activity is known to correlate with the clinical phenotype linked to individual CDG mutations, it is not known whether the degree of N-glycosylation site occupancy by itself correlates with the severity of the disease. To quantify the extent of underglycosylation in healthy control and in CDG samples, we developed a quantitative method of N-glycosylation site occupancy based on multiple reaction monitoring LC-MS/MS. Using isotopically labeled standard peptides, we directly quantified the level of N-glycosylation site occupancy on selected serum proteins. In healthy control samples, we determined 98-100% occupancy for all N-glycosylation sites of transferrin and alpha(1)-antitrypsin. In CDG type-I samples, we observed a reduction in N-glycosylation site occupancy that correlated with the severity of the disease. In addition, we noticed a selective underglycosylation of N-glycosylation sites, indicating preferential glycosylation of acceptor sequons of a given glycoprotein. In transferrin, a preferred occupancy for the first N-glycosylation site was observed, and a decreasing preference for the first, third, and second N-glycosylation sites was observed in alpha(1)-antitrypsin. This multiple reaction monitoring LC-MS/MS method can be extended to multiple glycoproteins, thereby enabling a glycoproteomics survey of N-glycosylation site occupancies in biological samples.


Asunto(s)
Cromatografía Liquida/métodos , Glicoproteínas/sangre , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Glicoproteínas/química , Glicosilación , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA