Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32769189

RESUMEN

Cellulolytic microorganisms play a key role in the global carbon cycle by decomposing structurally diverse plant biopolymers from dead plant matter. These microorganisms, in particular anaerobes such as Ruminiclostridium cellulolyticum that are capable of degrading and catabolizing several different polysaccharides, require a fine-tuned regulation of the biosynthesis of their polysaccharide-degrading enzymes. In this study, we present a bacterial regulatory system involved in the regulation of genes enabling the metabolism of the ubiquitous plant polysaccharide xyloglucan. The characterization of R. cellulolyticum knockout mutants suggests that the response regulator XygR and its cognate histidine kinase XygS are essential for growth on xyloglucan. Using in vitro and in vivo analyses, we show that XygR binds to the intergenic region and activates the expression of two polycistronic transcriptional units encoding an ABC transporter dedicated to the uptake of xyloglucan oligosaccharides and the two-component system itself together with three intracellular glycoside hydrolases responsible for the sequential intracellular degradation of the imported oligosaccharides into mono- and disaccharides. Interestingly, XygR also upregulates the expression of a distant gene coding for the most active extracellular cellulosomal xyloglucanase of R. cellulolyticum by binding to the upstream intergenic region.IMPORTANCERuminiclostridium cellulolyticum is a Gram-positive, mesophilic, anaerobic, cellulolytic, and hemicellulolytic bacterium. The last property qualifies this species as a model species for the study of hemicellulose degradation, import of degradation products, and overall regulation of these phenomena. In this study, we focus on the regulation of xyloglucan dextrin import and intracellular degradation and show that the two components of the two-component regulation system XygSR are essential for growth on xyloglucan and that the response regulator XygR regulates the transcription of genes involved in the extracellular degradation of the polysaccharide, the import of degradation products, and their intracellular degradation.


Asunto(s)
Proteínas Bacterianas/genética , Clostridium cellulolyticum/genética , Glucanos/metabolismo , Xilanos/metabolismo , Proteínas Bacterianas/metabolismo , Clostridium cellulolyticum/metabolismo
2.
mBio ; 12(6): e0220621, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749527

RESUMEN

Xyloglucan utilization by Ruminiclostridium cellulolyticum was formerly shown to imply the uptake of large xylogluco-oligosaccharides, followed by cytosolic depolymerization into glucose, galactose, xylose, and cellobiose. This raises the question of how the anaerobic bacterium manages the simultaneous presence of multiple sugars. Using genetic and biochemical approaches targeting the corresponding metabolic pathways, we observed that, surprisingly, all sugars are catabolized, collectively, but glucose consumption is prioritized. Most selected enzymes display unusual features, especially the GTP-dependent hexokinase of glycolysis, which appeared reversible and crucial for xyloglucan utilization. In contrast, mutant strains lacking either galactokinase, cellobiose-phosphorylase, or xylulokinase still catabolize xyloglucan but display variably altered growth. Furthermore, the xylogluco-oligosaccharide depolymerization process appeared connected to the downstream pathways through an intricate network of competitive and noncompetitive inhibitions. Altogether, our data indicate that xyloglucan utilization by R. cellulolyticum relies on an energy-saving central carbon metabolism deviating from current bacterial models, which efficiently prevents carbon overflow. IMPORTANCE The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars. Here, we describe how the model anaerobic bacterium Ruminiclostridium cellulolyticum deals with the synchronous intracellular release of glucose, galactose, xylose, and cellobiose upon cytosolic depolymerization of imported xyloglucan oligosaccharides. The described novel metabolic strategy involves the simultaneous activity of different metabolic pathways coupled to a network of inhibitions controlling the carbon flux and is distinct from the ubiquitously observed sequential uptake and metabolism of carbohydrates known as the diauxic shift. Our results highlight the diversity of cellular responses related to a complex environment.


Asunto(s)
Firmicutes/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celobiosa/metabolismo , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Redes y Vías Metabólicas , Polisacáridos/metabolismo
3.
Proteomics ; 10(3): 541-54, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20013800

RESUMEN

Clostridium cellulolyticum is a model mesophilic anaerobic bacterium that efficiently degrades plant cell walls. The recent genome release offers the opportunity to analyse its complete degradation system. A total of 148 putative carbohydrate-active enzymes were identified, and their modular structures and activities were predicted. Among them, 62 dockerin-containing proteins bear catalytic modules from numerous carbohydrate-active enzymes' families and whose diversity reflects the chemical and structural complexity of the plant carbohydrate. The composition of the cellulosomes produced by C. cellulolyticum upon growth on different substrates (cellulose, xylan, and wheat straw) was investigated by LC MS/MS. The majority of the proteins encoded by the cip-cel operon, essential for cellulose degradation, were detected in all cellulosome preparations. In the presence of wheat straw, the natural and most complex of the substrates studied, additional proteins predicted to be involved in hemicellulose degradation were produced. A 32-kb gene cluster encodes the majority of these proteins, all harbouring carbohydrate-binding module 6 or carbohydrate-binding module 22 xylan-binding modules along dockerins. This newly identified xyl-doc gene cluster, specialised in hemicellulose degradation, comes in addition of the cip-cel operon for plant cell wall degradation. Hydrolysis efficiencies determined on the different substrates corroborates the finding that cellulosome composition is adapted to the growth substrate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Clostridium cellulolyticum/metabolismo , Polisacáridos/metabolismo , Proteómica/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono/genética , Celulosomas/enzimología , Celulosomas/genética , Clostridium cellulolyticum/enzimología , Clostridium cellulolyticum/genética , Hidrólisis , Polisacáridos/genética , Especificidad por Sustrato
4.
FEBS J ; 287(12): 2544-2559, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31769922

RESUMEN

Cellulosomes are complex nanomachines produced by cellulolytic anaerobic bacteria such as Ruminiclostridium cellulolyticum (formerly known as Clostridium cellulolyticum). Cellulosomes are composed of a scaffoldin protein displaying several cohesin modules on which enzymatic components can bind to through their dockerin module. Although cellulosomes have been studied for decades, very little is known about the dynamics of complex assembly. We have investigated the ability of some dockerin-bearing enzymes to chase the catalytic subunits already bound onto a miniscaffoldin displaying a single cohesin. The stability of the preassembled enzyme-scaffoldin complex appears to depend on the nature of the dockerin, and we have identified a key position in the dockerin sequence that is involved in the stability of the complex with the cohesin. Depending on the residue occupying this position, the dockerin can establish with the cohesin partner either a nearly irreversible or a reversible interaction, independently of the catalytic domain associated with the dockerin. Site-directed mutagenesis of this residue can convert a dockerin able to form a highly stable complex with the miniscaffoldin into a reversible complex forming one and vice versa. We also show that refunctionalization can occur with natural purified cellulosomes. Altogether, our results shed light on the dynamics of cellulosomes, especially their capacity to be remodeled even after their assembly is 'achieved', suggesting an unforeseen adaptability of their enzymatic composition over time.


Asunto(s)
Celulosomas/metabolismo , Clostridium cellulolyticum/química , Complejos Multienzimáticos/metabolismo , Biocatálisis , Dominio Catalítico , Clostridium cellulolyticum/metabolismo
5.
Biotechnol Biofuels ; 12: 144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31198441

RESUMEN

BACKGROUND: The α-l-arabinofuranosidases (α-l-ABFs) are exoenzymes involved in the hydrolysis of α-l-arabinosyl linkages in plant cell wall polysaccharides. They play a crucial role in the degradation of arabinoxylan and arabinan and they are used in many biotechnological applications. Analysis of the genome of R. cellulolyticum showed that putative cellulosomal α-l-ABFs are exclusively encoded by the xyl-doc gene cluster, a large 32-kb gene cluster. Indeed, among the 14 Xyl-Doc enzymes encoded by this gene cluster, 6 are predicted to be α-l-ABFs belonging to the CAZyme families GH43 and GH62. RESULTS: The biochemical characterization of these six Xyl-Doc enzymes revealed that four of them are α-l-ABFs. GH4316-1229 (RcAbf43A) which belongs to the subfamily 16 of the GH43, encoded by the gene at locus Ccel_1229, has a low specific activity on natural substrates and can cleave off arabinose decorations located at arabinoxylan chain extremities. GH4310-1233 (RcAbf43Ad2,3), the product of the gene at locus Ccel_1233, belonging to subfamily 10 of the GH43, can convert the double arabinose decorations present on arabinoxylan into single O2- or O3-linked decorations with high velocity (k cat = 16.6 ± 0.6 s-1). This enzyme acts in synergy with GH62-1234 (RcAbf62Am2,3), the product of the gene at locus Ccel_1234, a GH62 α-l-ABF which hydrolyzes α-(1 → 3) or α-(1 → 2)-arabinosyl linkages present on polysaccharides and arabinoxylooligosaccharides monodecorated. Finally, a bifunctional enzyme, GH62-CE6-1240 (RcAbf62Bm2,3Axe6), encoded by the gene at locus Ccel_1240, which contains a GH62-α-l-ABF module and a carbohydrate esterase (CE6) module, catalyzes deacylation of plant cell wall polymers and cleavage of arabinosyl mono-substitutions. These enzymes are also active on arabinan, a component of the type I rhamnogalacturonan, showing their involvement in pectin degradation. CONCLUSION: Arabinofuranosyl decorations on arabinoxylan and pectin strongly inhibit the action of xylan-degrading enzymes and pectinases. α-l-ABFs encoded by the xyl-doc gene cluster of R. cellulolyticum can remove all the decorations present in the backbone of arabinoxylan and arabinan, act synergistically, and, thus, play a crucial role in the degradation of plant cell wall polysaccharides.

6.
J Bacteriol ; 190(5): 1499-506, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18156277

RESUMEN

The cip-cel cluster of genes plays an important role in the catabolism of the substrate cellulose by Clostridium cellulolyticum. It encodes several key components of the cellulosomes, including the scaffolding protein CipC and the major cellulase Cel48F. All the genes of this cluster display linked transcription, focusing attention on the promoter upstream from the first gene, cipC. We analyzed the regulation of the cipC promoter using a transcriptional fusion approach. A single promoter is located between nucleotides -671 and -643 with respect to the ATG start codon, and the large mRNA leader sequence is processed at position -194. A catabolite-responsive element (CRE) 414 nucleotides downstream from the transcriptional start site has been shown to be involved in regulating this operon by a carbon catabolite repression mechanism. This CRE is thought to bind a CcpA-like regulator complexed with a P-Ser-Crh-like protein. Sequences surrounding the promoter sequence may also be involved in direct (sequence-dependent DNA curvature) or indirect (unknown regulator binding) regulation.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Celulasa/genética , Clostridium cellulolyticum/genética , Operón , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
7.
FEBS Lett ; 592(2): 190-198, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29282732

RESUMEN

Ruminiclostridium cellulolyticum produces extracellular cellulosomes which contain interalia numerous family-9 glycoside hydrolases, including the inactive Cel9V. The latter shares the same organization and 79% sequence identity with the active cellulase Cel9E. Nevertheless, two aromatic residues and a four-residue stretch putatively critical for the activity are missing in Cel9V. Introduction of one Trytophan and the four-residue stretch restored some weak activity in Cel9V, whereas the replacement of its catalytic domain by that of Cel9E generated a fully active cellulase. Altogether our data indicate that a series of mutations in the catalytic domain of Cel9V lead to an essentially inactive cellulase.


Asunto(s)
Celulasa/genética , Celulasa/metabolismo , Clostridium cellulolyticum/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Celulasa/química , Activación Enzimática , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Triptófano/metabolismo
9.
Biotechnol Biofuels ; 8: 114, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26269713

RESUMEN

BACKGROUND: Ruminiclostridium cellulolyticum and Lachnoclostridium phytofermentans (formerly known as Clostridium cellulolyticum and Clostridium phytofermentans, respectively) are anaerobic bacteria that developed different strategies to depolymerize the cellulose and the related plant cell wall polysaccharides. Thus, R. cellulolyticum produces large extracellular multi-enzyme complexes termed cellulosomes, while L. phytofermentans secretes in the environment some cellulose-degrading enzymes as free enzymes. In the present study, the major cellulase from L. phytofermentans was introduced as a free enzyme or as a cellulosomal component in R. cellulolyticum to improve its cellulolytic capacities. RESULTS: The gene at locus Cphy_3367 encoding the major cellulase Cel9A from L. phytofermentans and an engineered gene coding for a modified enzyme harboring a R. cellulolyticum C-terminal dockerin were cloned in an expression vector. After electrotransformation of R. cellulolyticum, both forms of Cel9A were found to be secreted by the corresponding recombinant strains. On minimal medium containing microcrystalline cellulose as the sole source of carbon, the strain secreting the free Cel9A started to grow sooner and consumed cellulose faster than the strain producing the cellulosomal form of Cel9A, or the control strain carrying an empty expression vector. All strains reached the same final cell density but the strain producing the cellulosomal form of Cel9A was unable to completely consume the available cellulose even after an extended cultivation time, conversely to the two other strains. Analyses of their cellulosomes showed that the engineered form of Cel9A bearing a dockerin was successfully incorporated in the complexes, but its integration induced an important release of regular cellulosomal components such as the major cellulase Cel48F, which severely impaired the activity of the complexes on cellulose. In contrast, the cellulosomes synthesized by the control and the free Cel9A-secreting strains displayed similar composition and activity. Finally, the most cellulolytic strain secreting free Cel9A, was also characterized by an early production of lactate, acetate and ethanol as compared to the control strain. CONCLUSIONS: Our study shows that the cellulolytic capacity of R. cellulolyticum can be augmented by supplementing the cellulosomes with a free cellulase originating from L. phytofermentans, whereas integration of the heterologous enzyme in the cellulosomes is rather unfavorable.

10.
FEBS J ; 280(22): 5764-79, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24033928

RESUMEN

Bacterial cellulosomes are generally believed to assemble at random, like those produced by Clostridium cellulolyticum. They are composed of one scaffolding protein bearing eight homologous type I cohesins that bind to any of the type I dockerins borne by the 62 cellulosomal subunits, thus generating highly heterogeneous complexes. In the present study, the heterogeneity and random assembly of the cellulosomes were evaluated with a simpler model: a miniscaffoldin containing three C. cellulolyticum cohesins and three cellulases of the same bacterium bearing the cognate dockerin (Cel5A, Cel48F, and Cel9G). Surprisingly, rather than the expected randomized integration of enzymes, the assembly of the minicellulosome generated only three distinct types of complex out of the 10 possible combinations, thus indicating preferential integration of enzymes upon binding to the scaffoldin. A hybrid scaffoldin that displays one cohesin from C. cellulolyticum and one from C. thermocellum, thus allowing sequential integration of enzymes, was exploited to further characterize this phenomenon. The initial binding of a given enzyme to the C. thermocellum cohesin was found to influence the type of enzyme that subsequently bound to the C. cellulolyticum cohesin. The preferential integration appears to be related to the length of the inter-cohesin linker. The data indicate that the binding of a cellulosomal enzyme to a cohesin has a direct influence on the dockerin-bearing proteins that will subsequently interact with adjacent cohesins. Thus, despite the general lack of specificity of the cohesin-dockerin interaction within a given species and type, bacterial cellulosomes are not necessarily assembled at random.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulasas/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridium cellulolyticum/metabolismo , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Celulasas/química , Celulosomas/química , Proteínas Cromosómicas no Histona/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Cohesinas
11.
PLoS One ; 8(2): e56063, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418511

RESUMEN

The composition of the cellulosomes (multi enzymatic complexes involved in the degradation of plant cell wall polysaccharides) produced by Clostridium cellulolyticum differs according to the growth substrate. In particular, the expression of a cluster of 14 hemicellulase-encoding genes (called xyl-doc) seems to be induced by the presence of straw and not of cellulose. Genes encoding a putative two-component regulation system (XydS/R) were found upstream of xyl-doc. First evidence for the involvement of the response regulator, XydR, part of this two-component system, in the expression of xyl-doc genes was given by the analysis of the cellulosomes produced by a regulator overproducing strain when grown on cellulose. Nano-LC MS/MS analysis allowed the detection of the products of all xyl-doc genes and of the product of the gene at locus Ccel_1656 predicted to bear a carbohydrate binding domain targeting hemicellulose. RT-PCR experiments further demonstrated that the regulation occurs at the transcriptional level and that all xyl-doc genes are transcriptionally linked. mRNA quantification in a regulator knock-out strain and in its complemented derivative confirmed the involvement of the regulator in the expression of xyl-doc genes and of the gene at locus Ccel_1656 in response to straw. Electrophoretic mobility shift assays using the purified regulator further demonstrated that the regulator binds to DNA regions located upstream of the first gene of the xyl-doc gene cluster and upstream of the gene at locus Ccel_1656.


Asunto(s)
Proteínas Bacterianas/genética , Celulosomas/genética , Clostridium cellulolyticum/genética , Regulación Bacteriana de la Expresión Génica , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Western Blotting , Metabolismo de los Hidratos de Carbono/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , Celulosomas/metabolismo , Cromatografía Liquida , Clostridium cellulolyticum/metabolismo , Técnicas de Inactivación de Genes , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Espectrometría de Masas , Familia de Multigenes , Nanotecnología , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad por Sustrato
12.
PLoS One ; 8(7): e69360, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935995

RESUMEN

Clostridium cellulolyticum, a mesophilic anaerobic bacterium, produces highly active enzymatic complexes called cellulosomes. This strain was already shown to bind to cellulose, however the molecular mechanism(s) involved is not known. In this context we focused on the gene named hycP, encoding a 250-kDa protein of unknown function, containing a Family-3 Carbohydrate Binding Module (CBM3) along with 23 hyaline repeat modules (HYR modules). In the microbial kingdom the gene hycP is only found in C. cellulolyticum and the very close strain recently sequenced Clostridium sp BNL1100. Its presence in C. cellulolyticum guided us to analyze its function and its putative role in adhesion of the cells to cellulose. The CBM3 of HycP was shown to bind to crystalline cellulose and was assigned to the CBM3b subfamily. No hydrolytic activity on cellulose was found with a mini-protein displaying representative domains of HycP. A C. cellulolyticum inactivated hycP mutant strain was constructed, and we found that HycP is neither involved in binding of the cells to cellulose nor that the protein has an obvious role in cell growth on cellulose. We also characterized the role of the cellulosome scaffolding protein CipC in adhesion of C. cellulolyticum to cellulose, since cellulosome scaffolding protein has been proposed to mediate binding of other cellulolytic bacteria to cellulose. A second mutant was constructed, where cipC was inactivated. We unexpectedly found that CipC is only partly involved in binding of C. cellulolyticum to cellulose. Other mechanisms for cellulose adhesion may therefore exist in C. cellulolyticum. In addition, no cellulosomal protuberances were observed at the cellular surface of C. cellulolyticum, what is in contrast to reports from several other cellulosomes producing strains. These findings may suggest that C. cellulolyticum has no dedicated molecular mechanism to aggregate the cellulosomes at the cellular surface.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Celulosomas/genética , Clostridium cellulolyticum/genética , Biología Computacional , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Celulosa/metabolismo , Celulosomas/metabolismo , Clostridium cellulolyticum/metabolismo , Clostridium cellulolyticum/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
FEBS J ; 276(11): 3076-86, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19490109

RESUMEN

Cellulosomes produced by Clostridium cellulolyticum grown on cellulose were purified and separated using anion-exchange chromatography. SDS/PAGE analysis of six fractions showed variations in their cellulosomal protein composition. Hydrolytic activity on carboxymethyl cellulose, xylan, crystalline cellulose and hatched straw differed from one fraction to another. Fraction F1 showed a high level of activity on xylan, whereas fractions F5 and F6 were most active on crystalline cellulose and carboxymethyl cellulose, respectively. Several cellulosomal components specific to fractions F1, F5 and F6 were investigated using MS analysis. Several hemicellulases were identified, including three xylanases in F1, and several cellulases belonging to glycoside hydrolase families 9 and 5 and, a cystein protease inhibitor were identified in F5 and F6. Synergies were observed when two or three fractions were combined. A mixture containing fractions F1, F3 and F6 showed the most divergent cellulosomal composition, the most synergistic effects and the highest level of activity on straw (the most heterogeneous substrate tested). These findings show that on complex substrates such as straw, synergies occur between differently composed cellulosomes and the degradation efficiency of the cellulosomes is correlated with their enzyme diversity.


Asunto(s)
Clostridium cellulolyticum/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Celulasa/aislamiento & purificación , Celulasa/metabolismo , Celulosa/metabolismo , Celulosa/farmacología , Cromatografía por Intercambio Iónico , Cromatografía Liquida/métodos , Clostridium cellulolyticum/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/metabolismo , Gránulos Citoplasmáticos/química , Electroforesis en Gel de Poliacrilamida , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Cuerpos de Inclusión , Espectrometría de Masas/métodos
14.
J Bacteriol ; 189(6): 2300-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17209020

RESUMEN

The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.


Asunto(s)
Proteínas Bacterianas/genética , Celulasa/clasificación , Celulasa/genética , Celulosa/metabolismo , Clostridium cellulolyticum/enzimología , Complejos Multienzimáticos/clasificación , Complejos Multienzimáticos/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulasa/química , Celulasa/metabolismo , Celulasas/química , Celulasas/genética , Celulasas/metabolismo , Paseo de Cromosoma , Clostridium cellulolyticum/genética , Clostridium cellulolyticum/crecimiento & desarrollo , Electroforesis en Gel Bidimensional , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
15.
J Biol Chem ; 280(16): 16325-34, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15705576

RESUMEN

In recent work, we reported the self-assembly of a comprehensive set of defined "bifunctional" chimeric cellulosomes. Each complex contained the following: (i) a chimeric scaffoldin possessing a cellulose-binding module and two cohesins of divergent specificity and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. This approach allowed the controlled integration of desired enzymes into a multiprotein complex of predetermined stoichiometry and topology. The observed enhanced synergy on recalcitrant substrates by the bifunctional designer cellulosomes was ascribed to two major factors: substrate targeting and proximity of the two catalytic components. In the present work, the capacity of the previously described chimeric cellulosomes was amplified by developing a third divergent cohesin-dockerin device. The resultant trifunctional designer cellulosomes were assayed on homogeneous and complex substrates (microcrystalline cellulose and straw, respectively) and found to be considerably more active than the corresponding free enzyme or bifunctional systems. The results indicate that the synergy between two prominent cellulosomal enzymes (from the family-48 and -9 glycoside hydrolases) plays a crucial role during the degradation of cellulose by cellulosomes and that one dominant family-48 processive endoglucanase per complex is sufficient to achieve optimal levels of synergistic activity. Furthermore cooperation within a cellulosome chimera between cellulases and a hemicellulase from different microorganisms was achieved, leading to a trifunctional complex with enhanced activity on a complex substrate.


Asunto(s)
Celulosomas/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Celulosa/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona , Clostridium cellulolyticum/enzimología , Clostridium cellulolyticum/metabolismo , Clostridium thermocellum/enzimología , Clostridium thermocellum/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fúngicas , Cinética , Proteínas Nucleares/metabolismo , Especificidad por Sustrato , Cohesinas
16.
J Bacteriol ; 185(16): 4727-33, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12896991

RESUMEN

Clostridium cellulolyticum secretes large multienzymatic complexes with plant cell wall-degrading activities named cellulosomes. Most of the genes encoding cellulosomal components are located in a large gene cluster: cipC-cel48F-cel8C-cel9G-cel9E-orfX-cel9H-cel9J-man5K-cel9M. Downstream of the cel9M gene, a new open reading frame was discovered and named rgl11Y. Amino acid sequence analysis indicates that this gene encodes a multidomain pectinase, Rgl11Y, containing an N-terminal signal sequence, a catalytic domain belonging to family 11 of the polysaccharide lyases, and a C-terminal dockerin domain. The present report describes the biochemical characterization of a recombinant form of Rgl11Y. Rgl11Y cleaves the alpha-L-Rhap-(1-->4)-alpha-D-GalpA glycosidic bond in the backbone of rhamnogalacturonan I (RGI) via a beta-elimination mechanism. Its specific activity on potato pectic galactan and rhamnogalacturonan was found to be 28 and 3.6 IU/mg, respectively, indicating that Rgl11Y requires galactan decoration of the RGI backbone. The optimal pH of Rgl11Y is 8.5 and calcium is required for its activity. Rgl11Y was shown to be incorporated in the C. cellulolyticum cellulosome through a typical cohesin-dockerin interaction. Rgl11Y from C. cellulolyticum is the first cellulosomal rhamnogalacturonase characterized.


Asunto(s)
Clostridium/enzimología , Pectinas/metabolismo , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos , Polisacárido Liasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
17.
Appl Environ Microbiol ; 70(12): 6984-91, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15574891

RESUMEN

A chimeric enzyme associating feruloyl esterase A (FAEA) from Aspergillus niger and dockerin from Clostridium thermocellum was produced in A. niger. A completely truncated form was produced when the dockerin domain was located downstream of the FAEA (FAEA-Doc), whereas no chimeric protein was produced when the bacterial dockerin domain was located upstream of the FAEA (Doc-FAEA). Northern blot analysis showed similar transcript levels for the two constructs, indicating a posttranscriptional bottleneck for Doc-FAEA production. The sequence encoding the first 514 amino acids from A. niger glucoamylase and a dibasic proteolytic processing site (kex-2) were fused upstream of the Doc-FAEA sequence. By using this fusion strategy, the esterase activity found in the extracellular medium was 20-fold-higher than that of the wild-type reference strain, and the production yield was estimated to be about 100 mg of chimeric protein/liter. Intracellular and extracellular production was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, dockerin-cohesin interaction assays, and Western blotting. Labeled cohesins detected an intact extracellular Doc-FAEA of about 43 kDa and a cleaved-off dockerin domain of about 8 kDa. In addition, an intracellular 120-kDa protein was recognized by using labeled cohesins and antibodies raised against FAEA. This protein corresponded to the unprocessed Doc-FAEA form fused to glucoamylase. In conclusion, these results indicated that translational fusion to glucoamylase improved the secretion efficiency of a chimeric Doc-FAEA protein and allowed production of the first functional fungal enzyme joined to a bacterial dockerin.


Asunto(s)
Aspergillus niger/enzimología , Proteínas Bacterianas/metabolismo , Biotecnología/métodos , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas Portadoras/metabolismo , Clostridium thermocellum/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Aspergillus niger/genética , Proteínas Bacterianas/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Clostridium thermocellum/genética , Proteínas Fúngicas , Proteínas Nucleares/metabolismo , Transcripción Genética , Transformación Genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA