Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 42(13): e112767, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37161784

RESUMEN

To maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood. Here, we report that SCFFBXL4 , an SKP1/CUL1/F-box protein ubiquitin ligase complex, localises to the mitochondrial outer membrane in unstressed cells and mediates the constitutive ubiquitylation and degradation of the mitophagy receptors NIX and BNIP3 to suppress basal levels of mitophagy. We demonstrate that the pathogenic variants of FBXL4 that cause encephalopathic mtDNA depletion syndrome (MTDPS13) do not efficiently interact with the core SCF ubiquitin ligase machinery or mediate the degradation of NIX and BNIP3. Thus, we reveal a molecular mechanism whereby FBXL4 actively suppresses mitophagy by preventing NIX and BNIP3 accumulation. We propose that the dysregulation of NIX and BNIP3 turnover causes excessive basal mitophagy in FBXL4-associated mtDNA depletion syndrome.


Asunto(s)
Mitofagia , Fagocitosis , Autofagia/fisiología , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Humanos , Animales , Ratones
2.
EMBO Rep ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992176

RESUMEN

Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.

3.
Nat Rev Mol Cell Biol ; 14(6): 369-81, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23657496

RESUMEN

S phase kinase-associated protein 1 (SKP1)-cullin 1 (CUL1)-F-box protein (SCF) ubiquitin ligase complexes use a family of F-box proteins as substrate adaptors to mediate the degradation of a large number of regulatory proteins involved in diverse processes. The dysregulation of SCF complexes and their substrates contributes to multiple pathologies. In the 14 years since the identification and annotation of the F-box protein family, the continued identification and characterization of novel substrates has greatly expanded our knowledge of the regulation of substrate targeting and the roles of F-box proteins in biological processes. Here, we focus on the evolution of our understanding of substrate recruitment by F-box proteins, the dysregulation of substrate recruitment in disease and potential avenues for F-box protein-directed disease therapies.


Asunto(s)
Evolución Molecular , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Humanos , Especificidad por Sustrato/fisiología
4.
Nature ; 546(7659): 554-558, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28614300

RESUMEN

In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten-/- mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.


Asunto(s)
Apoptosis , Calcio/metabolismo , Proteínas F-Box/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Animales , Unión Competitiva , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fibroblastos , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Mutación , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fotoquimioterapia , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Ubiquitina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
7.
Nature ; 481(7379): 90-3, 2012 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-22113614

RESUMEN

BCL6 is the product of a proto-oncogene implicated in the pathogenesis of human B-cell lymphomas. By binding specific DNA sequences, BCL6 controls the transcription of a variety of genes involved in B-cell development, differentiation and activation. BCL6 is overexpressed in the majority of patients with aggressive diffuse large B-cell lymphoma (DLBCL), the most common lymphoma in adulthood, and transgenic mice constitutively expressing BCL6 in B cells develop DLBCLs similar to the human disease. In many DLBCL patients, BCL6 overexpression is achieved through translocation (~40%) or hypermutation of its promoter (~15%). However, many other DLBCLs overexpress BCL6 through an unknown mechanism. Here we show that BCL6 is targeted for ubiquitylation and proteasomal degradation by a SKP1­CUL1­F-box protein (SCF) ubiquitin ligase complex that contains the orphan F-box protein FBXO11 (refs 5, 6). The gene encoding FBXO11 was found to be deleted or mutated in multiple DLBCL cell lines, and this inactivation of FBXO11 correlated with increased levels and stability of BCL6. Similarly, FBXO11 was either deleted or mutated in primary DLBCLs. Notably, tumour-derived FBXO11 mutants displayed an impaired ability to induce BCL6 degradation. Reconstitution of FBXO11 expression in FBXO11-deleted DLBCL cells promoted BCL6 ubiquitylation and degradation, inhibited cell proliferation, and induced cell death. FBXO11-deleted DLBCL cells generated tumours in immunodeficient mice, and the tumorigenicity was suppressed by FBXO11 reconstitution. We reveal a molecular mechanism controlling BCL6 stability and propose that mutations and deletions in FBXO11 contribute to lymphomagenesis through BCL6 stabilization. The deletions/mutations found in DLBCLs are largely monoallelic, indicating that FBXO11 is a haplo-insufficient tumour suppressor gene.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Mutación/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteolisis , Alelos , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/genética , Eliminación de Gen , Genes Supresores de Tumor , Células HEK293 , Humanos , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/patología , Ratones , Trasplante de Neoplasias , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteína-Arginina N-Metiltransferasas/deficiencia , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-bcl-6 , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitinación
8.
Circ Res ; 112(7): 1046-58, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23538275

RESUMEN

Proper protein turnover is required for cardiac homeostasis and, accordingly, impaired proteasomal function appears to contribute to heart disease. Specific proteasomal degradation mechanisms underlying cardiovascular biology and disease have been identified, and such cellular pathways have been proposed to be targets of clinical relevance. This review summarizes the latest literature regarding the specific E3 ligases involved in heart biology, and the general ways that the proteasome regulates protein quality control in heart disease. The potential for therapeutic intervention in Ubiquitin Proteasome System function in heart disease is discussed.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Remodelación Ventricular/fisiología , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Humanos , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/terapia
9.
Autophagy ; 20(6): 1459-1461, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423516

RESUMEN

Mitophagy is a critical mitochondrial quality control process that selectively removes dysfunctional or excess mitochondria through the autophagy-lysosome system. The process is tightly controlled to ensure cellular and physiological homeostasis. Insufficient mitophagy can result in failure to remove damaged mitochondria and consequent cellular degeneration, but it is equally important to appropriately restrain mitophagy to prevent excessive mitochondrial depletion. Here, we discuss our recent discovery that the SKP1-CUL1-F-box (SCF)-FBXL4 (F-box and leucine-rich repeat protein 4) E3 ubiquitin ligase localizes to the mitochondrial outer membrane, where it constitutively mediates the ubiquitination and degradation of BNIP3L/NIX and BNIP3 mitophagy receptors to suppress mitophagy. The post-translational regulation of BNIP3L and BNIP3 is disrupted in mitochondrial DNA depletion syndrome 13 (MTDPS13), a multi-systemic disorder caused by mutations in the FBXL4 gene and characterized by elevated mitophagy and mitochondrial DNA/mtDNA depletion in patient fibroblasts. Our results demonstrate that mitophagy is not solely stimulated in response to specific conditions but is instead also actively suppressed through the continuous degradation of BNIP3L and BNIP3 mediated by the SCF-FBXL4 ubiquitin ligase. Thus, cellular conditions or signaling events that prevent the FBXL4-mediated turnover of BNIP3L and BNIP3 on specific mitochondria are expected to facilitate their selective removal.


Asunto(s)
Proteínas F-Box , Mitocondrias , Mitofagia , Mitofagia/fisiología , Humanos , Proteínas F-Box/metabolismo , Mitocondrias/metabolismo , Animales , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligasas
10.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909604

RESUMEN

Pptc7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass concomitant with elevation of the mitophagy receptors Bnip3 and Nix. Consistently, Pptc7-/- mouse embryonic fibroblasts (MEFs) exhibit a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs-including multiple sites on Bnip3 and Nix. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that Pptc7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for Pptc7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.

11.
Nat Commun ; 14(1): 6431, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833277

RESUMEN

PPTC7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass and metabolic capacity with elevated hepatic triglyceride accumulation. Pptc7 knockout animals exhibit increased expression of the mitophagy receptors BNIP3 and NIX, and Pptc7-/- mouse embryonic fibroblasts (MEFs) display a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs, including multiple sites on BNIP3 and NIX, and our molecular studies demonstrate that PPTC7 can directly interact with and dephosphorylate these proteins. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that PPTC7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for PPTC7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.


Asunto(s)
Proteínas Mitocondriales , Mitofagia , Animales , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Fibroblastos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
12.
Stem Cell Reports ; 15(4): 817-826, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32946803

RESUMEN

Centrosome reduction and redistribution of pericentriolar material (PCM) coincides with cardiomyocyte transitions to a post-mitotic and matured state. However, it is unclear whether centrosome changes are a cause or consequence of terminal differentiation. We validated that centrosomes were intact and functional in proliferative human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), consistent with their immature phenotype. We generated acentrosomal hPSC-CMs, through pharmacological inhibition of centriole duplication, and showed that centrosome loss was sufficient to promote post-mitotic transitions and aspects of cardiomyocyte maturation. As Hippo kinases are activated during post-natal cardiac maturation, we pharmacologically activated the Hippo pathway using C19, which was sufficient to trigger centrosome disassembly and relocalization of PCM components to perinuclear membranes. This was due to specific activation of Hippo kinases, as direct inhibition of YAP-TEAD interactions with verteporfin had no effect on centrosome organization. This suggests that Hippo kinase-centrosome remodeling may play a direct role in cardiac maturation.


Asunto(s)
Diferenciación Celular , Centrosoma/metabolismo , Miocitos Cardíacos/citología , Proliferación Celular , Ventrículos Cardíacos/citología , Vía de Señalización Hippo , Humanos , Mitosis , Células Madre Pluripotentes/citología , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Elife ; 72018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985131

RESUMEN

The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.


Asunto(s)
Daño del ADN , Proteínas F-Box/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Línea Celular , Reparación del ADN/genética , Proteínas F-Box/química , Recombinación Homóloga/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/química , Cinética , Lisina/metabolismo , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Ubiquitinación
14.
Curr Biol ; 13(2): 156-60, 2003 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-12546791

RESUMEN

Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response. TNFalpha plays a key role in inflammatory disease; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that, in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.


Asunto(s)
Citocinas/metabolismo , Activación de Macrófagos/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Transporte Vesicular , Animales , Línea Celular , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Proteínas de la Membrana/genética , Ratones , Proteínas Qa-SNARE , Proteínas SNARE , Factor de Necrosis Tumoral alfa/metabolismo
15.
Cell Cycle ; 16(6): 556-564, 2017 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-28118078

RESUMEN

FEM1A, FEM1B, and FEM1C are evolutionarily-conserved VHL-box proteins, the substrate recognition subunits of CUL2-RING E3 ubiquitin ligase complexes. Here, we report that FEM1 proteins are ancient regulators of Stem-Loop Binding Protein (SLBP), a conserved protein that interacts with the stem loop structure located in the 3' end of canonical histone mRNAs and functions in mRNA cleavage, translation and degradation. SLBP levels are highest during S-phase coinciding with histone synthesis. The ubiquitin ligase complex SCFcyclin F targets SLBP for degradation in G2 phase; however, the regulation of SLBP during other stages of the cell cycle is poorly understood. We provide evidence that FEM1A, FEM1B, and FEM1C interact with and mediate the degradation of SLBP. Cyclin F, FEM1A, FEM1B and FEM1C all interact with a region in SLBP's N-terminus using distinct degrons. An SLBP mutant that is unable to interact with all 4 ligases is expressed at higher levels than wild type SLBP and does not oscillate during the cell cycle. We demonstrate that orthologues of SLBP and FEM1 proteins interact in C. elegans and D. melanogaster, suggesting that the pathway is evolutionarily conserved. Furthermore, we show that FEM1 depletion in C. elegans results in the upregulation of SLBP ortholog CDL-1 in oocytes. Notably, cyclin F is absent in flies and worms, suggesting that FEM1 proteins play an important role in SLBP targeting in lower eukaryotes.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteolisis , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Secuencia Conservada , Regulación hacia Abajo , Evolución Molecular , Humanos , Proteínas Nucleares/química , Unión Proteica , Complejos de Ubiquitina-Proteína Ligasa , Factores de Escisión y Poliadenilación de ARNm/química
16.
Nat Cell Biol ; 17(1): 31-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25503564

RESUMEN

An intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication. We show that the intercentrosomal linker protein Cep68 is degraded in prometaphase through the SCF(ßTrCP) (Skp1-Cul1-F-box protein) ubiquitin ligase complex. Cep68 degradation is initiated by PLK1 phosphorylation of Cep68 on Ser 332, allowing recognition by ßTrCP. We also found that Cep68 forms a complex with Cep215 (also known as Cdk5Rap2) and PCNT (also known as pericentrin), two PCM (pericentriolar material) proteins involved in centriole engagement. Cep68 and PCNT bind to different pools of Cep215. We propose that Cep68 degradation allows Cep215 removal from the peripheral PCM preventing centriole separation following disengagement, whereas PCNT cleavage mediates Cep215 removal from the core of the PCM to inhibit centriole disengagement and duplication.


Asunto(s)
Antígenos/metabolismo , Centriolos/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Metafase/genética , Fosforilación , Prometafase/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Ligasas SKP Cullina F-box/genética , Quinasa Tipo Polo 1
17.
Nat Rev Drug Discov ; 13(12): 889-903, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25394868

RESUMEN

The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Proteínas F-Box/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Proteínas F-Box/antagonistas & inhibidores , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Unión Proteica/fisiología , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores
18.
Nat Cell Biol ; 13(8): 888-90, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21808243

RESUMEN

Regulatory mechanisms to prevent centriole overduplication during the cell cycle are not completely understood. In this issue, FBXW5 is shown to control the degradation of the centriole assembly factor HsSAS-6. Moreover, the study proposes that FBXW5 is a substrate of both PLK4 and APC/C, two established regulators of centriole duplication.


Asunto(s)
Centrosoma/fisiología , Proteínas F-Box/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Centriolos/fisiología , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
19.
Cell Cycle ; 9(5): 971-4, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20160477

RESUMEN

F-box proteins are the substrate recognition subunits of SCF (Skp1, Cul1, F-box protein) ubiquitin ligase complexes. Skp2 is a nuclear F-box protein that targets the CDK inhibitor p27 for ubiquitin- and proteasome-dependent degradation. In G(0) and during the G(1) phase of the cell cycle, Skp2 is degraded via the APC/C(Cdh1) ubiquitin ligase to allow stabilization of p27 and inhibition of CDKs, facilitating the maintenance of the G(0)/G(1) state. APC/C(Cdh1) binds Skp2 through an N-terminal domain (amino acids 46-94 in human Skp2). It has been shown that phosphorylation of Ser64 and Ser72 in this domain dissociates Skp2 from APC/C. More recently, it has instead been proposed that phosphorylation of Skp2 on Ser72 by Akt/PKB allows Skp2 binding to Skp1, promoting the assembly of an active SCF(Skp2) ubiquitin ligase, and Skp2 relocalization/retention into the cytoplasm, promoting cell migration via an unknown mechanism. According to these reports, a Skp2 mutant in which Ser72 is substituted with Ala is unable to promote cell proliferation and loses its oncogenic potential. Given the contrasting reports, we revisited these results and conclude that phosphorylation of Skp2 on Ser72 does not control Skp2 binding to Skp1 and Cul1, has no influence on SCF(Skp2) ubiquitin ligase activity, and does not affect the subcellular localization of Skp2.


Asunto(s)
Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Serina/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Línea Celular , Proteínas Cullin/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Fase G1 , Humanos , Mutación , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fase de Descanso del Ciclo Celular , Proteínas Quinasas Asociadas a Fase-S/análisis , Proteínas Quinasas Asociadas a Fase-S/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
20.
Cell Cycle ; 8(14): 2198-210, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19502790

RESUMEN

Chromosomes in PTEN deficient cells display both numerical as well as structural alterations including regional amplification. We found that PTEN deficient cells displayed a normal DNA damage response (DDR) as evidenced by the ionizing radiation (IR)-induced phosphorylation of Ataxia Telangiectasia Mutated (ATM) as well as its effectors. PTEN deficient cells also had no defect in Rad51 expression or DNA damage repair kinetics post irradiation. In contrast, caffeine treatment specifically increased IR-induced chromosome aberrations and mitotic index only in cells with PTEN, and not in cells deficient for PTEN, suggesting that their checkpoints were defective. Furthermore, PTEN-deficient cells were unable to maintain active spindle checkpoint after taxol treatment. Genomic instability in PTEN deficient cells could not be attributed to lack of PTEN at centromeres, since no interaction was detected between centromeric DNA and PTEN in wild type cells. These results indicate that PTEN deficiency alters multiple cell cycle checkpoints possibly leaving less time for DNA damage repair and/or chromosome segregation as evidenced by the increased structural as well as numerical alterations seen in PTEN deficient cells.


Asunto(s)
Ciclo Celular , Reparación del ADN , Inestabilidad Genómica , Fosfohidrolasa PTEN/metabolismo , Antineoplásicos Fitogénicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Cafeína/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Humanos , Rayos Infrarrojos , Cariotipificación , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Paclitaxel/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA