Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neuroinflammation ; 21(1): 58, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409076

RESUMEN

Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1ß. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1ß release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.


Asunto(s)
Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Canales Iónicos/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P2X7/metabolismo
2.
J Pharmacol Exp Ther ; 377(3): 407-416, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795395

RESUMEN

GPR6 is an orphan G-protein-coupled receptor that has enriched expression in the striatopallidal, indirect pathway and medium spiny neurons of the striatum. This pathway is greatly impacted by the loss of the nigro-striatal dopaminergic neurons in Parkinson disease, and modulating this neurocircuitry can be therapeutically beneficial. In this study, we describe the in vitro and in vivo pharmacological characterization of (R)-1-(2-(4-(2,4-difluorophenoxy)piperidin-1-yl)-3-((tetrahydrofuran-3-yl)amino)-7,8-dihydropyrido[3,4-b]pyrazin-6(5H)-yl)ethan-1-one (CVN424), a highly potent and selective small-molecule inverse agonist for GPR6 that is currently undergoing clinical evaluation. CVN424 is brain-penetrant and shows dose-dependent receptor occupancy that attained brain 50% of receptor occupancy at plasma concentrations of 6.0 and 7.4 ng/ml in mice and rats, respectively. Oral administration of CVN424 dose-dependently increases locomotor activity and reverses haloperidol-induced catalepsy. Furthermore, CVN424 restored mobility in bilateral 6-hydroxydopamine lesion model of Parkinson disease. The presence and localization of GPR6 in medium spiny neurons of striatum postmortem samples from both nondemented control and patients with Parkinson disease were confirmed at the level of both RNA (using Nuclear Enriched Transcript Sort sequencing) and protein. This body of work demonstrates that CVN424 is a potent, orally active, and brain-penetrant GPR6 inverse agonist that is effective in preclinical models and is a potential therapeutic for improving motor function in patients with Parkinson disease. SIGNIFICANCE STATEMENT: CVN424 represents a nondopaminergic novel drug for potential use in patients with Parkinson disease.


Asunto(s)
Cuerpo Estriado , Animales , Hormonas Esteroides Gonadales , Ratas
3.
Cephalalgia ; 39(7): 827-840, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30582714

RESUMEN

BACKGROUND: To further understand the role of pituitary adenylate cyclase-activating polypeptide 1 (PAC1) receptors in headache disorders, we mapped their expression in tissues of the trigemino-autonomic system by immunohistochemistry and in situ hybridization. METHODS: To optimize screening for monoclonal antibodies suitable for immunohistochemistry on formalin-fixed, paraffin-embedded tissues, we developed a new enzyme-linked immunosorbent assay using formalin-fixed, paraffin-embedded cells overexpressing human PAC1 receptors. 169G4.1 was selected from these studies for analysis of rat and human tissues and chimerized onto a mouse backbone to avoid human-on-human cross-reactivity. Immunoreactivity was compared to PAC1 receptor mRNA by in situ hybridization in both species. RESULTS: 169G4.1 immunoreactivity delineated neuronal cell bodies in the sphenopalatine ganglion in both rat and human, whereas no staining was detected in the trigeminal ganglion. The spinal trigeminal nucleus in both species showed immunoreactivity as especially strong in the upper laminae with both cell bodies and neuropil being labelled. No immunoreactivity was seen in either rat or human dura mater vessels. In situ hybridization in both species revealed mRNA in sphenopalatine ganglion neurons and the spinal trigeminal nucleus, a weak signal in the trigeminal nucleus and no signal in dural vessels. CONCLUSION: Taken together, these data support a role for PAC1 receptors in the trigemino-autonomic system as it relates to headache pathophysiology.


Asunto(s)
Ganglios Parasimpáticos/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Ganglio del Trigémino/metabolismo , Núcleo Espinal del Trigémino/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Cefalea/metabolismo , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/análisis
4.
J Autism Dev Disord ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954361

RESUMEN

Children with autism from underserved communities face complex system-, provider-, and family-level barriers to accessing timely diagnosis and early intervention. The current study evaluated the preliminary effects and feasibility of a new program (ECHO Autism LINKS) that integrated pediatric primary care provider (PCP) training with family navigation (FN) to bridge the gaps between screening, referral, and service access. Three cohorts of PCPs (n = 42) participated in the program, which consisted of 60-minute sessions delivered by Zoom twice per month for 12 months. Each session included didactics, case-based learning, and collaborative discussion with participants and an interdisciplinary team of experts. Family navigators were members of the expert team and provided FN services to families referred by PCP participants. Program attendance and engagement were strong, with 40 cases presented and 258 families referred for FN services, most of whom (83%) needed help accessing and connecting with services, and 13% required ongoing support due to complex needs. PCPs demonstrated significant improvements in self-efficacy in providing best-practice care for children with autism, reported high satisfaction, and observed improved knowledge and practice as a result of the program. The results of this initial pilot provide support for the feasibility, acceptability, and preliminary efficacy of the ECHO Autism LINKS program. The model holds promise in addressing complex barriers to healthcare access by providing both PCPs and families with the knowledge and support they need. Future research is needed to evaluate the efficacy and effectiveness of the program in improving child and family outcomes.

5.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382893

RESUMEN

Mucosal-associated invariant T (MAIT) cells use canonical semi-invariant T cell receptors (TCR) to recognize microbial riboflavin precursors displayed by the antigen-presenting molecule MR1. The extent of MAIT TCR crossreactivity toward physiological, microbially unrelated antigens remains underexplored. We describe MAIT TCRs endowed with MR1-dependent reactivity to tumor and healthy cells in the absence of microbial metabolites. MAIT cells bearing TCRs crossreactive toward self are rare but commonly found within healthy donors and display T-helper-like functions in vitro. Experiments with MR1-tetramers loaded with distinct ligands revealed significant crossreactivity among MAIT TCRs both ex vivo and upon in vitro expansion. A canonical MAIT TCR was selected on the basis of extremely promiscuous MR1 recognition. Structural and molecular dynamic analyses associated promiscuity to unique TCRß-chain features that were enriched within self-reactive MAIT cells of healthy individuals. Thus, self-reactive recognition of MR1 represents a functionally relevant indication of MAIT TCR crossreactivity, suggesting a potentially broader role of MAIT cells in immune homeostasis and diseases, beyond microbial immunosurveillance.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Membrana Celular , Comunicación Celular , Reacciones Cruzadas , Reparación del ADN , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor
6.
Neuropharmacology ; 224: 109330, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375694

RESUMEN

Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1ß, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1ß from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Inflamasomas/metabolismo , Microglía , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
7.
Br J Pharmacol ; 179(3): 358-370, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34600443

RESUMEN

BACKGROUND AND PURPOSE: Lasmiditan is a novel selective 5-HT1F receptor agonist, recently approved for acute treatment of migraine. 5-HT1F receptors are widely expressed in the CNS and trigeminovascular system. Here, we have explored the therapeutic effects of 5-HT1F receptor activation in preclinical models of migraine and cluster headache. EXPERIMENTAL APPROACH: Electrical stimulation of the dura mater or the superior salivatory nucleus in anaesthetised rats evoked trigeminovascular or trigeminal-autonomic reflex activation at the level of the trigeminocervical complex. Additionally, cranial autonomic manifestations in response to trigeminal-autonomic reflex activation were measured, via anterior choroidal blood flow alterations. These responses were then challenged with lasmiditan. We explored the tissue distribution of mRNA for 5-HT1F receptors in human post-mortem tissue and of several 5-HT1 receptor subtypes in specific tissue beds. KEY RESULTS: Lasmiditan dose-dependently reduced trigeminovascular activation in a preclinical model of migraine. Lasmiditan also reduced superior salivatory nucleus-evoked activation of the trigeminal-autonomic reflex, but had no effect on cranial autonomic activation. mRNA profiling in human tissue showed expression of the 5-HT1F receptor in several structures relevant for migraine and cluster headache. CONCLUSION AND IMPLICATIONS: Our data suggest that lasmiditan acts, at least in part, as an anti-migraine agent by reducing trigeminovascular activation. Furthermore, our results highlight a clear action for lasmiditan in a preclinical model of cluster headache. Given the proven translational efficacy of this model, our data support the potential utility of lasmiditan as a therapeutic option for the acute treatment of cluster headache attacks. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Asunto(s)
Cefalalgia Histamínica , Trastornos Migrañosos , Animales , Benzamidas , Cefalalgia Histamínica/tratamiento farmacológico , Trastornos Migrañosos/tratamiento farmacológico , Nocicepción , Piperidinas , Piridinas , ARN Mensajero , Ratas , Receptores de Serotonina , Serotonina , Receptor de Serotonina 5-HT1F
8.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411386

RESUMEN

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Asunto(s)
Tronco Encefálico , Leptina , Neuronas , Pérdida de Peso , Animales , Humanos , Masculino , Ratones , Tronco Encefálico/metabolismo , Leptina/metabolismo , Ratones Obesos , Neuronas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores de Orexina/metabolismo
9.
JCI Insight ; 6(20)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491911

RESUMEN

The PD-1/PD-L1 pathway is a key immune checkpoint that regulates T cell activation. There is strong rationale to develop PD-1 agonists as therapeutics against autoimmunity, but progress in this area has been limited. Here, we generated T cell receptor (TCR) targeting, PD-1 agonist bispecifics called ImmTAAI molecules that mimic the ability of PD-L1 to facilitate the colocalization of PD-1 with the TCR complex at the target cell-T cell interface. PD-1 agonist ImmTAAI molecules specifically bound to target cells and were highly effective in activating the PD-1 receptor on interacting T cells to achieve immune suppression. Potent PD-1 antibody ImmTAAI molecules closely mimicked the mechanism of action of endogenously expressed PD-L1 in their localization to the target cell-T cell interface, inhibition of proximal TCR signaling events, and suppression of T cell function. At picomolar concentrations, these bispecifics suppressed cytokine production and inhibited CD8+ T cell-mediated cytotoxicity in vitro. Crucially, in soluble form, the PD-1 ImmTAAI molecules were inactive and, hence, could avoid systemic immunosuppression. This study outlines a promising new route to generate more effective, potent, tissue-targeted PD-1 agonists that can inhibit T cell function locally with the potential to treat autoimmune and chronic inflammatory diseases of high unmet need.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Humanos
10.
Arterioscler Thromb Vasc Biol ; 27(3): 690-6, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17185615

RESUMEN

OBJECTIVE: 3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitors (statins) exhibit antithrombotic properties that are independent of reductions in circulating LDL cholesterol. We hypothesized that these antithrombotic properties are mediated by membrane alterations secondary to disrupted lipid metabolism. METHODS AND RESULTS: EA.hy926 cells were incubated in the presence of 1 micromol/L atorvastatin supplemented with fetal bovine serum or lipid-depleted serum mixtures. Lipid restriction alone had no effect on cell lipid composition but when atorvastatin was included, phosphatidylserine, sphingomyelin, and cholesterol were reduced by 50% while ceramide content decreased by 70%. These changes in lipid composition did not alter the association of decay accelerating factor or tissue factor with lipid rafts. Atorvastatin in combination with lipid restriction reduced factor VIIa/tissue factor activity by as much as 75% but did not alter tissue factor expression. Prothrombinase activity was reduced to an extent similar to factor VIIa/tissue factor. Mevalonic acid but not LDL reversed the observed changes in lipid content and prothrombinase activity induced by atorvastatin. These findings were confirmed in primary cells. CONCLUSIONS: Inhibition of HMG-CoA reductase limits exposure of phosphatidylserine at the cell surface by restricting the cellular pool of mevalonate-derived isoprenoids. This membrane alteration restricts the activity of proteolytic enzyme complexes that propagate the coagulation cascade.


Asunto(s)
Factor VIIa/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Hidroximetilglutaril-CoA Reductasas/efectos de los fármacos , Fosfatidilserinas/metabolismo , Pirroles/farmacología , Tromboplastina/metabolismo , Animales , Atorvastatina , Western Blotting , Bovinos , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Factor VIIa/metabolismo , Fibroblastos/fisiología , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Sensibilidad y Especificidad , Tromboplastina/efectos de los fármacos
12.
Thromb Haemost ; 89(1): 65-73, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12540955

RESUMEN

Tissue factor pathway inhibitor (TFPI) abrogates coagulation initiated by the factor VIIa/tissue factor catalytic complex. While the gene structure of TFPI suggests that it is a secreted protein, a large pool of TFPI is associated with the vascular endothelium through its affinity for a glycosylphosphati-dylinositol (GPI)-linked membrane protein. Inhibition of tissue factor by TFPI coincides with the translocation of quaternary complexes containing tissue factor, factor VIIa, factor Xa, and TFPI to detergent-insoluble plasma membrane domains rich in cholesterol, sphingomyelin, and GPI-linked proteins known as lipid rafts and caveolae. It is not known if localization of TFPI to these membrane domains is required for its inhibition of tissue factor procoagulant activity. We generated chimeric TFPI molecules linked directly to the plasma membrane via a GPI anchor or hydrophobic transmembrane domain and expressed these in HEK293 cells that produce tissue factor but not endogenous TFPI. The GPI-anchored chimera was exclusively enriched in detergent-insoluble membrane fractions while the transmembrane molecule was not. Transfectants expressing equal levels of the GPI-linked or transmembrane TFPI displayed equal anticoagulant potency as assessed by tissue factor-mediated conversion of factor X to factor Xa. Disruption of lipid rafts with cyclodextrin likewise had no effect on the inhibitory activity of the transmembrane or GPI-linked TFPI chimeras in HEK293 cells, nor on endogenous TFPI expressed by ECV304 cells. Thus, we conclude that the GPI anchor and membrane localization to lipid rafts does not enhance inhibition of factor VIIa/tissue factor by cell-surface associated TFPI.


Asunto(s)
Factor VIIa/antagonistas & inhibidores , Lipoproteínas/fisiología , Microdominios de Membrana/metabolismo , Tromboplastina/antagonistas & inhibidores , Línea Celular , Membrana Celular/metabolismo , Ciclodextrinas/metabolismo , Relación Dosis-Respuesta a Droga , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Humanos , Cinética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Transfección
14.
Int J Clin Exp Pathol ; 4(3): 295-306, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21487525

RESUMEN

Prostate cancer is the most common cancer and the second leading cause of cancer deaths among males in most Western countries. Autologous cellular immunotherapy for the treatment of cancer seeks to induce tumor-specific immunity in the patient and is consequently dependent on a suitable target antigen and effective presentation of that antigen to the patient's immune system. Prostatic acid phosphatase (PAP) has been tested as a target antigen due to its high and apparently specific expression in the prostate. We used a variety of approaches to analyze PAP expression, including immunohistochemistry, in situ hybridization, and quantitative polymerase chain reaction. We complemented these laboratory-based techniques with an in silico analysis of reported PAP expression in human cDNA libraries. Our studies confirmed that, while PAP expression is not restricted to prostate tissues, its expression in other human tissues is approximately 1-2 orders of magnitude less than that observed in the prostate. The relative specificity of PAP expression in the prostate supports its use as a target of autologous cellular immunotherapy. The approach described here, involving the use of multiple correlates of tissue-specific expression, is warranted as a prerequisite in selecting any suitable target for immunotherapy.


Asunto(s)
Carcinoma/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Fosfatasa Ácida , Anciano , Carcinoma/genética , Humanos , Inmunohistoquímica , Hibridación in Situ , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Páncreas/metabolismo , Neoplasias de la Próstata/genética , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Blood ; 103(8): 3038-44, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15070681

RESUMEN

A fraction of total cellular tissue factor procoagulant activity remains masked or "encrypted" in intact cells. Decryption of this activity partly involves the extracellular exposure of anionic phospholipids such as phosphatidylserine. Because of the potential association of tissue factor and phospholipid scramblase activity with lipid rafts, we have explored the role of lipid rafts in regulating factor VIIa/tissue factor activity. In HEK293 cells, tissue factor antigen was not stably associated with lipid rafts, yet disruption of rafts with methyl-beta-cyclodextrin resulted in a 3-fold stimulation of tissue factor procoagulant activity. Treatment with methyl-beta-cyclodextrin was not associated with cytotoxicity and did not result in the exposure of additional tissue factor antigen. Factor VIIa/tissue factor activity decrypted with methyl-beta-cyclodextrin was quantitatively similar to that obtained by using lytic concentrations of octyl glucoside but more sensitive to inhibition by cell surface tissue factor pathway inhibitor and the phospholipid binding protein, annexin V. Partial decryption of tissue factor was achieved with methyl-beta-cyclodextrin prior to complete disruption of lipid rafts, suggesting the role of an enzyme localized to lipid rafts in the transbilayer transport of phosphatidylserine. We conclude that lipid rafts are required for the maintenance of cellular tissue factor in an encrypted state.


Asunto(s)
Microdominios de Membrana/metabolismo , Tromboplastina/antagonistas & inhibidores , beta-Ciclodextrinas , Anexina A5/farmacología , Coagulación Sanguínea , Línea Celular , Ciclodextrinas/farmacología , Factor VIIa/metabolismo , Glucósidos/farmacología , Humanos , Lipoproteínas/farmacología , Microdominios de Membrana/efectos de los fármacos , Solubilidad
16.
Am J Respir Cell Mol Biol ; 31(3): 302-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15191914

RESUMEN

The physiological role of the duodenal peptide secretin is as a potent stimulant of electrolyte and water movement in pancreatic and biliary epithelium, via activation of G protein-coupled secretin receptors (hSCTR). However, the distribution and potential function of hSCTR in human lung has not previously been addressed. Using real-time quantitative reverse transcriptase-polymerase chain reaction profiling, in situ hybridization, and immunohistochemistry, we demonstrated that the hSCTR is abundantly expressed within the distal regions of human lung (tertiary bronchus and parenchyma), with negligible expression detected in more proximal regions (trachea, primary, and secondary bronchus). Expression was observed predominantly on the basolateral membrane of the bronchial epithelial layer, with some expression also observed in bronchial smooth muscle. In primary cultures of human tertiary bronchial epithelial cells, secretin was demonstrated to potently stimulate channel-mediated Cl- efflux in a concentration-dependent manner. Secretin was also shown to cause concentration-dependent relaxation of human tertiary bronchial smooth muscle. In summary, these data demonstrate that secretin receptors are present in human lung, and that activation of these receptors with human secretin potently stimulates concentration-dependent Cl- efflux from bronchial epithelial cells and bronchorelaxation.


Asunto(s)
Pulmón/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Secretina/metabolismo , Bronquios/citología , Bronquios/metabolismo , Broncodilatadores/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Relación Dosis-Respuesta a Droga , Duodeno/metabolismo , Humanos , Pulmón/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Secretina/genética , Secretina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA