Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 19(10): 1215-1225, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29388305

RESUMEN

This paper presents the first application specific integrated chip (ASIC) for the monitoring of patients who have suffered a Traumatic Brain Injury (TBI). By monitoring the neurophysiological (ECoG) and neurochemical (glucose, lactate and potassium) signals of the injured human brain tissue, it is possible to detect spreading depolarisations, which have been shown to be associated with poor TBI patient outcome. This paper describes the testing of a new 7.5 mm2 ASIC fabricated in the commercially available AMS 0.35 µm CMOS technology. The ASIC has been designed to meet the demands of processing the injured brain tissue's ECoG signals, recorded by means of depth or brain surface electrodes, and neurochemical signals, recorded using microdialysis coupled to microfluidics-based electrochemical biosensors. The potentiostats use switchedcapacitor charge integration to record currents with 100 fA resolution, and allow automatic gain changing to track the falling sensitivity of a biosensor. This work supports the idea of a "behind the ear" wireless microplatform modality, which could enable the monitoring of currently non-monitored mobile TBI patients for the onset of secondary brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico , Monitorización Neurofisiológica , Electricidad , Humanos
2.
IEEE Trans Biomed Circuits Syst ; 8(2): 186-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24686302

RESUMEN

This paper presents a bio-inspired method for in-vivo control of blood glucose based on a model of the pancreatic ß-cell. The proposed model is shown to be implementable using low-power analogue integrated circuits in CMOS, realizing a biologically faithful implementation which captures all the behaviours seen in physiology. This is then shown to be capable of glucose control using an in silico population of diabetic subjects achieving 93% of the time in tight glycemic target (i.e., [70, 140] mg/dl) . The proposed controller is then compared with a commonly used external physiological insulin delivery (ePID) controller for glucose control. Results confirm equivalent, or superior, performance in comparison with ePID. The system has been designed in a commercially available 0.35 µm CMOS process and achieves an overall power consumption of 1.907 mW.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus/terapia , Células Secretoras de Insulina/fisiología , Modelos Biológicos , Monitoreo Fisiológico , Páncreas Artificial , Diseño de Equipo , Humanos , Sistemas de Infusión de Insulina , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA