Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Bioinformatics ; 21(Suppl 8): 199, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938402

RESUMEN

BACKGROUND: Non-coding RNAs include different classes of molecules with regulatory functions. The most studied are microRNAs (miRNAs) that act directly inhibiting mRNA expression or protein translation through the interaction with a miRNAs-response element. Other RNA molecules participate in the complex network of gene regulation. They behave as competitive endogenous RNA (ceRNA), acting as natural miRNA sponges to inhibit miRNA functions and modulate the expression of RNA messenger (mRNA). It became evident that understanding the ceRNA-miRNA-mRNA crosstalk would increase the functional information across the transcriptome, contributing to identify new potential biomarkers for translational medicine. RESULTS: We present miRTissue ce, an improvement of our original miRTissue web service. By introducing a novel computational pipeline, miRTissue ce provides an easy way to search for ceRNA interactions in several cancer tissue types. Moreover it extends the functionalities of previous miRTissue release about miRNA-target interaction in order to provide a complete insight about miRNA mediated regulation processes. miRTissue ce is freely available at http://tblab.pa.icar.cnr.it/mirtissue.html . CONCLUSIONS: The study of ceRNA networks and its dynamics in cancer tissue could be applied in many fields of translational biology, as the investigation of new cancer biomarker, both diagnostic and prognostic, and also in the investigation of new therapeutic strategies of intervention. In this scenario, miRTissue ce can offer a powerful instrument for the analysis and characterization of ceRNA-ceRNA interactions in different tissue types, representing a fundamental step in order to understand more complex regulation mechanisms.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , MicroARNs/genética , ARN Neoplásico/genética , Humanos , Pronóstico
2.
BMC Bioinformatics ; 17(Suppl 11): 321, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28185545

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNA sequences with regulatory functions to post-transcriptional level for several biological processes, such as cell disease progression and metastasis. MiRNAs interact with target messenger RNA (mRNA) genes by base pairing. Experimental identification of miRNA target is one of the major challenges in cancer biology because miRNAs can act as tumour suppressors or oncogenes by targeting different type of targets. The use of machine learning methods for the prediction of the target genes is considered a valid support to investigate miRNA functions and to guide related wet-lab experiments. In this paper we propose the miRNA Target Interaction Predictor (miRNATIP) algorithm, a Self-Organizing Map (SOM) based method for the miRNA target prediction. SOM is trained with the seed region of the miRNA sequences and then the mRNA sequences are projected into the SOM lattice in order to find putative interactions with miRNAs. These interactions will be filtered considering the remaining part of the miRNA sequences and estimating the free-energy necessary for duplex stability. RESULTS: We tested the proposed method by predicting the miRNA target interactions of both the Homo sapiens and the Caenorhbditis elegans species; then, taking into account validated target (positive) and non-target (negative) interactions, we compared our results with other target predictors, namely miRanda, PITA, PicTar, mirSOM, TargetScan and DIANA-microT, in terms of the most used statistical measures. We demonstrate that our method produces the greatest number of predictions with respect to the other ones, exhibiting good results for both species, reaching the for example the highest percentage of sensitivity of 31 and 30.5 %, respectively for Homo sapiens and for C. elegans. All the predicted interaction are freely available at the following url: http://tblab.pa.icar.cnr.it/public/miRNATIP/ . CONCLUSIONS: Results state miRNATIP outperforms or is comparable to the other six state-of-the-art methods, in terms of validated target and non-target interactions, respectively.


Asunto(s)
Algoritmos , Caenorhabditis elegans/genética , Biología Computacional/métodos , MicroARNs/genética , ARN Mensajero/genética , Programas Informáticos , Animales , Inteligencia Artificial , Sitios de Unión , Caenorhabditis elegans/metabolismo , Humanos , MicroARNs/metabolismo
3.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292627

RESUMEN

This work focuses on the distribution of LINE-1 (a Long Interspersed Nuclear Element) in primates and its role during evolution and as a constituent of the architecture of primate genomes. To pinpoint the LINE-1 repeat distribution and its role among primates, LINE-1 probes were mapped onto chromosomes of Homo sapiens (Hominidae, Catarrhini), Sapajus apella, and Cebus capucinus (Cebidae, Platyrrhini) using fluorescence in situ hybridisation (FISH). The choice of platyrrhine species are due to the fact they are taxa characterised by a high level of rearrangements; for this reason, they could be a useful model for the study of LINE-1 and chromosome evolution. LINE-1 accumulation was found in the two Cebidae at the centromere of almost all acrocentric chromosomes 16-22 and on some bi-armed chromosomes. LINE-1 pattern was similar in the two species but only for chromosomes 6, 8, 10, and 18, due to intrachromosomal rearrangements in agreement with what was previously hypothesised as through g banding. LINE-1 interstitial accumulation was found in humans on the 1, 8, 9, 13-15, and X chromosomes; on chromosomes 8, 9, and 13-15, the signal was also at the centromeric position. This is in agreement with recent and complete molecular sequence analysis of human chromosomes 8 and some acrocentric ones. Thus, the hypothesis regarding a link between LINE-1 and centromeres as well as a link with rearrangements are discussed. Indeed, data analysis leads us to support a link between LINE-1 and inter- and intrachromosomal rearrangements, as well as a link between LINE-1 and structural functions at centromeres in primates.


Asunto(s)
Cebidae , Animales , Humanos , Cebidae/genética , Retroelementos/genética , Cariotipificación , Cebus/genética , Cromosoma X , Elementos de Nucleótido Esparcido Largo/genética
4.
Breast Cancer Res Treat ; 119(2): 443-52, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19404735

RESUMEN

Biallelic inactivation of the ATM gene causes ataxia-telangiectasia (A-T), a complex neurological disease associated with a high risk of leukaemias and lymphomas. Mothers of A-T children, obligate ATM heterozygote mutation carriers, have a breast cancer (BC) relative risk of about 3. The frequency of ATM carriers in BC women with a BC family history has been estimated to be 2.70%. To further our clinical understanding of familial BC and examine whether haematological malignancies are predictive of ATM germline mutation, we estimated the frequency of heterozygote mutation carriers in a series of 122 BC women with a family history of both BC and haematological malignancy and without BRCA1/2 mutation. The gene screening was performed with a new high throughput method, EMMA (enhanced mismatch mutation analysis). Amongst 28 different ATM variants, eight mutations have been identified in eight patients: two mutations leading to a putative truncated protein and six being likely deleterious mutations. One of the truncating mutations was initially interpreted as a missense mutation, p.Asp2597Tyr, but is actually a splice mutation (c.7789G>T/p.Asp2597_Lys2643>LysfsX3). The estimated frequency of ATM heterozygote mutation carriers in our series is 6.56% (95% CI: 2.16-10.95), a significantly higher figure than that observed in the general population, estimated to be between 0.3 and 0.6%. Although a trend towards an increased frequency of ATM carriers was observed, it was not different from that observed in a population of familial BC women not selected for haematological malignancy as the frequency of ATM carriers was 2.70%, a value situated in the confidence interval of our study.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Leucemia/genética , Linfoma/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Adulto , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Neoplasias de la Mama/epidemiología , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Heterocigoto , Humanos , Datos de Secuencia Molecular , Linaje , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA