Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
PLoS Pathog ; 20(6): e1012361, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941361

RESUMEN

The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.

2.
PLoS Biol ; 21(4): e3002048, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014915

RESUMEN

One of the deepest branches in the tree of life separates the Archaea from the Bacteria. These prokaryotic groups have distinct cellular systems including fundamentally different phospholipid membrane bilayers. This dichotomy has been termed the lipid divide and possibly bestows different biophysical and biochemical characteristics on each cell type. Classic experiments suggest that bacterial membranes (formed from lipids extracted from Escherichia coli, for example) show permeability to key metabolites comparable to archaeal membranes (formed from lipids extracted from Halobacterium salinarum), yet systematic analyses based on direct measurements of membrane permeability are absent. Here, we develop a new approach for assessing the membrane permeability of approximately 10 µm unilamellar vesicles, consisting of an aqueous medium enclosed by a single lipid bilayer. Comparing the permeability of 18 metabolites demonstrates that diether glycerol-1-phosphate lipids with methyl branches, often the most abundant membrane lipids of sampled archaea, are permeable to a wide range of compounds useful for core metabolic networks, including amino acids, sugars, and nucleobases. Permeability is significantly lower in diester glycerol-3-phosphate lipids without methyl branches, the common building block of bacterial membranes. To identify the membrane characteristics that determine permeability, we use this experimental platform to test a variety of lipid forms bearing a diversity of intermediate characteristics. We found that increased membrane permeability is dependent on both the methyl branches on the lipid tails and the ether bond between the tails and the head group, both of which are present on the archaeal phospholipids. These permeability differences must have had profound effects on the cell physiology and proteome evolution of early prokaryotic forms. To explore this further, we compare the abundance and distribution of transmembrane transporter-encoding protein families present on genomes sampled from across the prokaryotic tree of life. These data demonstrate that archaea tend to have a reduced repertoire of transporter gene families, consistent with increased membrane permeation. These results demonstrate that the lipid divide demarcates a clear difference in permeability function with implications for understanding some of the earliest transitions in cell origins and evolution.


Asunto(s)
Archaea , Liposomas Unilamelares , Archaea/genética , Liposomas Unilamelares/metabolismo , Glicerol/metabolismo , Membrana Celular/metabolismo , Bacterias/metabolismo , Lípidos de la Membrana/metabolismo , Fosfolípidos/metabolismo , Fosfatos/metabolismo , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/metabolismo
3.
PLoS Biol ; 19(10): e3001406, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637438

RESUMEN

Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria-phage interactions in naturally structured environments.


Asunto(s)
Bacteriófagos/fisiología , Ambiente , Escherichia coli/virología , Simulación por Computador , Fenotipo , Receptores Virales/metabolismo
4.
Biophys J ; 119(2): 274-286, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32610089

RESUMEN

Dimethyl sulfoxide (DMSO) is widely used in a number of biological and biotechnological applications, mainly because of its effects on the cell plasma membrane, but the molecular origins of this action are yet to be fully clarified. In this work, we used two- and three-component synthetic membranes (liposomes) and the plasma membrane of human erythrocytes to investigate the effect of DMSO when added to the membrane-solvating environment. Fourier transform infrared spectroscopy and thermal fluctuation spectroscopy revealed significant differences in the response of the two types of liposome systems to DMSO in terms of the bilayer thermotropic behavior, available free volume of the bilayer, its excess surface area, and bending elasticity. DMSO also alters the mechanical properties of the erythrocyte membrane in a concentration-dependent manner and is capable of increasing membrane permeability to ATP at even relatively low concentrations (3% v/v and above). Taken in its entirety, these results show that DMSO is likely to have a differential effect on heterogeneous biological membranes, depending on their local composition and structure, and could affect membrane-hosted biological functions.


Asunto(s)
Dimetilsulfóxido , Liposomas , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Humanos , Liposomas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
5.
Nat Methods ; 12(3): 199-202, 4 p following 202, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25643151

RESUMEN

We introduce real-time deformability cytometry (RT-DC) for continuous cell mechanical characterization of large populations (>100,000 cells) with analysis rates greater than 100 cells/s. RT-DC is sensitive to cytoskeletal alterations and can distinguish cell-cycle phases, track stem cell differentiation into distinct lineages and identify cell populations in whole blood by their mechanical fingerprints. This technique adds a new marker-free dimension to flow cytometry with diverse applications in biology, biotechnology and medicine.


Asunto(s)
Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Antígenos CD34/metabolismo , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Forma de la Célula , Citocalasina D/farmacología , Citoesqueleto , Diseño de Equipo , Células HL-60/citología , Células HL-60/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Técnicas Analíticas Microfluídicas
6.
BMC Biol ; 15(1): 121, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29262826

RESUMEN

BACKGROUND: Clonal microbial populations often harbor rare phenotypic variants that are typically hidden within the majority of the remaining cells, but are crucial for the population's resilience to external perturbations. Persister and viable but non-culturable (VBNC) cells are two important clonal bacterial subpopulations that can survive antibiotic treatment. Both persister and VBNC cells pose a serious threat to human health. However, unlike persister cells, which quickly resume growth following drug removal, VBNC cells can remain non-growing for prolonged periods of time, thus eluding detection via traditional microbiological assays. Therefore, understanding the molecular mechanisms underlying the formation of VBNC cells requires the characterization of the clonal population with single-cell resolution. A combination of microfluidics, time-lapse microscopy, and fluorescent reporter strains offers the perfect platform for investigating individual cells while manipulating their environment. METHODS: Here, we report a novel single-cell approach to investigate VBNC cells. We perform drug treatment, bacterial culturing, and live/dead staining in series by using transcriptional reporter strains and novel adaptations to the mother machine technology. Since we track each cell throughout the experiment, we are able to quantify the size, morphology and fluorescence that each VBNC cell displayed before, during and after drug treatment. RESULTS: We show that VBNC cells are not dead or dying cells but share similar phenotypic features with persister cells, suggesting a link between these two subpopulations, at least in the Escherichia coli strain under investigation. We strengthen this link by demonstrating that, before drug treatment, both persister and VBNC cells can be distinguished from the remainder of the population by their lower fluorescence when using a reporter strain for tnaC, encoding the leader peptide of the tnaCAB operon responsible for tryptophan metabolism. CONCLUSION: Our data demonstrates the suitability of our approach for studying the physiology of non-growing cells in response to external perturbations. Our approach will allow the identification of novel biomarkers for the isolation of VBNC and persister cells and will open new opportunities to map the detailed biochemical makeup of these clonal subpopulations.


Asunto(s)
Escherichia coli/fisiología , Microfluídica/métodos , Microscopía/métodos , Análisis de la Célula Individual/métodos , Fenómenos Fisiológicos Bacterianos , Viabilidad Microbiana , Microscopía/instrumentación , Análisis de la Célula Individual/instrumentación , Imagen de Lapso de Tiempo/instrumentación
7.
Phys Rev Lett ; 117(3): 038001, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472142

RESUMEN

Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15} N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

8.
J Am Chem Soc ; 137(43): 13836-43, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26478537

RESUMEN

Decreased drug accumulation is a common cause of antibiotic resistance in microorganisms. However, there are few reliable general techniques capable of quantifying drug uptake through bacterial membranes. We present a semiquantitative optofluidic assay for studying the uptake of autofluorescent drug molecules in single liposomes. We studied the effect of the Escherichia coli outer membrane channel OmpF on the accumulation of the fluoroquinolone antibiotic, norfloxacin, in proteoliposomes. Measurements were performed at pH 5 and pH 7, corresponding to two different charge states of norfloxacin that bacteria are likely to encounter in the human gastrointestinal tract. At both pH values, the porins significantly enhance drug permeation across the proteoliposome membranes. At pH 5, where norfloxacin permeability across pure phospholipid membranes is low, the porins increase drug permeability by 50-fold on average. We estimate a flux of about 10 norfloxacin molecules per second per OmpF trimer in the presence of a 1 mM concentration gradient of norfloxacin. We also performed single channel electrophysiology measurements and found that the application of transmembrane voltages causes an electric field driven uptake in addition to concentration driven diffusion. We use our results to propose a physical mechanism for the pH mediated change in bacterial susceptibility to fluoroquinolone antibiotics.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Fluoroquinolonas/farmacología , Porinas/metabolismo , Antibacterianos/química , Escherichia coli/química , Escherichia coli/metabolismo , Fluorescencia , Fluoroquinolonas/química , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Porinas/química , Relación Estructura-Actividad
9.
Nat Mater ; 13(6): 638-644, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747782

RESUMEN

Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.


Asunto(s)
Diferenciación Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Células Madre Embrionarias/citología , Ratones , Células Madre Pluripotentes/citología
10.
Phys Rev Lett ; 115(3): 038301, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26230830

RESUMEN

Particle-particle interactions are of paramount importance in every multibody system as they determine the collective behavior and coupling strength. Many well-known interactions such as electrostatic, van der Waals, or screened Coulomb interactions, decay exponentially or with negative powers of the particle spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as 1/r in bulk, and are assumed to decay in small channels. Such interactions are ubiquitous in biological and technological systems. Here we confine two particles undergoing Brownian motion in narrow, microfluidic channels and study their coupling through hydrodynamic interactions. Our experiments show that the hydrodynamic particle-particle interactions are distance independent in these channels. This finding is of fundamental importance for the interpretation of experiments where dense mixtures of particles or molecules diffuse through finite length, water-filled channels or pore networks.

11.
Phys Rev Lett ; 113(4): 048102, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25105657

RESUMEN

We investigate single-file diffusion of Brownian particles in arrays of closely confining microchannels permeated by a variety of attractive optical potentials and connecting two baths with equal particle concentration. We simultaneously test free diffusion in the channel, diffusion in optical traps coupled in the center of the channel, and diffusion in traps extending into the baths. We found that both classes of attractive optical potentials enhance the translocation rate through the channel with respect to free diffusion. Surprisingly, for the latter class of potentials we measure a 40-fold enhancement in the translocation rate with respect to free diffusion and find a sublinear power law dependence of the translocation rate on the average number of particles in the channel. Our results reveal the function of particle binding at the channel entrances for diffusive transport and open the way to a better understanding of membrane transport and design of synthetic membranes with enhanced diffusion rate.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Modelos Biológicos , Sitios de Unión , Difusión , Microfluídica , Óptica y Fotónica
12.
Nano Lett ; 13(11): 5056-62, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24090350

RESUMEN

The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young's modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers.

13.
Curr Opin Microbiol ; 78: 102436, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38368839

RESUMEN

Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR-Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Notably, diverse DSs often coexist within the same genome, and some co-occur at frequencies significantly higher than would be expected by chance, implying potential synergistic interactions. Recent studies have provided evidence of defence mechanisms that enhance or complement one another. Here, we review the interactions between DSs at the mechanistic, regulatory, ecological and evolutionary levels.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacterias/genética , Evolución Biológica , Bacteriófagos/genética
14.
Microbiol Spectr ; 11(1): e0366722, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36651776

RESUMEN

With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, ß-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with ß-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing.


Asunto(s)
Ampicilina , Antibacterianos , Antibacterianos/farmacología , Ampicilina/farmacología , Ciprofloxacina/farmacología , Fluoroquinolonas/farmacología , Bacterias , beta-Lactamas/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana
15.
Biomicrofluidics ; 17(1): 014106, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704613

RESUMEN

Herringbone micromixers are a powerful tool for introducing advection into microfluidic systems. While these mixers are typically used for mixing fluids faster than the rate of diffusion, there has been recent interest in using the device to enhance interactions between suspended particles and channel walls. We show how the common approximations applied to herringbone micromixer theory can have a significant impact on results. We show that the inclusion of gravity can greatly alter the interaction probability between suspended particles and channel walls. We also investigate the proposed impedance matching condition and the inclusion of imperfect binding using numerical methods, and investigate transient behaviors using an experimental system. These results indicate that while traditional methods, such as simple streamline analysis, remain powerful tools, it should not be considered predictive in the general case.

16.
ISME Commun ; 3(1): 95, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684358

RESUMEN

The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.

17.
Commun Biol ; 6(1): 409, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37055536

RESUMEN

Antimicrobial resistance is an urgent threat to human health, and new antibacterial drugs are desperately needed, as are research tools to aid in their discovery and development. Vancomycin is a glycopeptide antibiotic that is widely used for the treatment of Gram-positive infections, such as life-threatening systemic diseases caused by methicillin-resistant Staphylococcus aureus (MRSA). Here we demonstrate that modification of vancomycin by introduction of an azide substituent provides a versatile intermediate that can undergo copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction with various alkynes to readily prepare vancomycin fluorescent probes. We describe the facile synthesis of three probes that retain similar antibacterial profiles to the parent vancomycin antibiotic. We demonstrate the versatility of these probes for the detection and visualisation of Gram-positive bacteria by a range of methods, including plate reader quantification, flow cytometry analysis, high-resolution microscopy imaging, and single cell microfluidics analysis. In parallel, we demonstrate their utility in measuring outer-membrane permeabilisation of Gram-negative bacteria. The probes are useful tools that may facilitate detection of infections and development of new antibiotics.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Vancomicina , Humanos , Vancomicina/farmacología , Colorantes Fluorescentes/farmacología , Azidas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas
18.
J Appl Phys ; 132(16): 164701, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36313737

RESUMEN

Integrating miniature pumps within microfluidic devices is crucial for advancing point-of-care diagnostics. Understanding the emergence of flow from novel integrated pumping systems is the first step in their successful implementation. A Purcell-like elasto-magnetic integrated microfluidic pump has been simulated in COMSOL Multiphysics and its performance has been investigated and evaluated. An elastic, cilia-like element contains an embedded magnet, which allows for actuation via a weak, uniaxial, sinusoidally oscillating, external magnetic field. Pumping performance is correlated against a number of variables, such as the frequency of the driving field and the proximity of the pump to the channel walls, in order to understand the emergence of the pumping behavior. Crucially, these simulations capture many of the trends observed experimentally and shed light on the key interactions. The proximity of the channel walls in the in-plane direction strongly determines the direction of net fluid flow. This characterization has important implications for the design and optimization of this pump in practical applications.

19.
Open Biol ; 12(7): 220041, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857930

RESUMEN

Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/metabolismo , Archaea/genética , Proteínas de Transporte de Membrana/genética , Nutrientes , Agua/metabolismo
20.
Cell Host Microbe ; 30(1): 31-40.e5, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932986

RESUMEN

Phages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phage-derived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.


Asunto(s)
Inmunidad Adaptativa/genética , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Sistemas CRISPR-Cas/inmunología , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Bacteriófagos/genética , Genoma Bacteriano , Humanos , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA