Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-17, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286203

RESUMEN

1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.

2.
Indian J Microbiol ; 62(3): 447-455, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35974908

RESUMEN

The dependency on non-renewable fossil fuels as an energy source has drastically increased global temperatures. Their continuous use poses a great threat to the existing energy reserves. Therefore, the energy sector has taken a turn toward developing eco-friendly, sustainable energy generation by using sustainable lignocellulosic wastes, such as rice straw (RS). For lignocellulosic waste to be utilized as an efficient energy source, it needs to be broken down into less complex forms by pretreatment processes, such as alkaline pretreatment using NaOH. Varied NaOH concentrations (0.5%,1.0%,1.5%,2%) for alkaline pretreatment of RS were used for the holocellulose generation. Amongst the four NaOH concentrations tested, RS-1.5% exhibited higher holocellulose generation of 80.1%, whereas 0.5%, 1 5 and 2% pointed 71.9%, 73.8%, and 78.5% holocellulose generation, respectively. Further, microbial fuel cells (MFCs) were tested for voltage generation by utilizing holocellulose generated from untreated (RS-0%) and mildly alkaline pretreated RS (RS-1.5%) as a feedstock. The MFC voltage and maximum power generation using RS-0% were 194 mV and 167 mW/m2, respectively. With RS-1.5%, the voltage and maximum power generation were 556 mV and 583 mW/m2, respectively. The power density of RS-1.5% was three-fold higher than that of RS-0%. The increase in MFC power generation suggests that alkaline pretreatment plays a crucial role in enhancing the overall performance.

3.
Indian J Microbiol ; 59(1): 22-26, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30728627

RESUMEN

Algae are autotrophic organisms that are widespread in water bodies. Increased pollution in water bodies leads to eutrophication. However, algae growing in lakes undergoing eutrophication could be utilized towards the generation of added-value bio-electricity using microbial fuel cells (MFCs). In the present study, two methods of electricity generation using raw algae (RA) and RA + acetate (AC) as co-substrate were analyzed in single chamber air cathode MFCs. MFCs supplemented with RA and RA + AC clearly showed higher power density, greater current generation, and improved COD (chemical oxygen demand) removal, which demonstrated the feasibility of using AC as substrate for MFC. The MFC-RA + AC (0.48 mA) generated 28% higher current relative to that generated by MFC with RA alone. Notably, the maximum power densities generated by MFC-RA and MFC-RA + AC were 230 and 410 mW/m2, respectively. MFC-RA and MFC-RA + AC exhibited TCOD (total chemical oxygen reduction) removal values of 77% and 86.6%, respectively. Despite the high influent TCOD (758 mg/l) concentration, the MFC-RA + AC exhibited an 8.5% higher COD removal relative to that of MFC-RA (525 mg/l). Our current findings demonstrated effective energy generation using algae biomass with a co-substrate.

4.
Bioresour Technol ; 331: 125063, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33813167

RESUMEN

Enhanced covalent immobilization of xylanase from Chaetomium globosum (XylCg) onto SiO2 nanoparticles was achieved by the modification of surface residues. The mutation of surface residues to lysine by site-directed mutagenesis increased the immobilization efficiency (IE) and immobilization yield (IY). The immobilized mutant XylCg (N172K-H173K-S176K-K133A-K148A) exhibited an IY of 99.5% and IE of 135%, which were 1.8- and 4.3-fold higher than immobilized wildtype (WT). Regarding the catalytic properties, the kcat and kcat/Km values were 1850 s-1 and 2030 mL mg-1 s-1 for the immobilized mutant, and 331 s-1 and 404 mL mg-1 s-1 for the immobilized WT, respectively. Additionally, the immobilized mutant exhibited four times higher thermal stability than the immobilized WT at 60 °C. These results suggest that surface-mutated lysine residues confer good stability and orientation on the support matrix, thus improving the overall performance of xylanase.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Chaetomium , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Lisina , Temperatura
5.
J Microbiol Biotechnol ; 29(11): 1760-1768, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31693832

RESUMEN

The use of lignocellulosic biomass such as rice straw can help subsidize the cost of producing value-added chemicals. However, inhibitory compounds, such as phenolics, produced during the pre-treatment of biomass, hamper the saccharification process. Laccase and electrochemical stimuli are both well known to reduce phenolic compounds. Therefore, in this study, we implemented a bioelectrochemical detoxification system (BEDS), a consolidated electrochemical and enzymatic process involving laccase, to enhance the detoxification of phenolics, and thus achieve a higher saccharification efficiency. Saccharification of pretreated rice straw using BEDS at 1.5 V showed 90% phenolic reduction (Phr), thereby resulting in a maximum saccharification yield of 85%. In addition, the specific power consumption when using BEDS (2.2 W/Kg Phr) was noted to be 24% lower than by the electrochemical process alone (2.89 W/kg Phr). To the best of our knowledge, this is the first study to implement BEDS for reduction of phenolic compounds in pretreated biomass.


Asunto(s)
Fuentes de Energía Bioeléctrica , Lacasa/metabolismo , Oryza/metabolismo , Fenoles/metabolismo , Biomasa , Celulasa/metabolismo , Inactivación Metabólica , Lignina/metabolismo , Oryza/química , Azúcares/metabolismo
6.
J Microbiol Biotechnol ; 28(4): 638-644, 2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29385669

RESUMEN

In this study, the immobilization of xylanase using a protein-inorganic hybrid nanoflower system was assessed to improve the enzyme properties. The synthesis of hybrid xylanase nanoflowers was very effective at 4°C for 72 h, using 0.25 mg/ml protein, and efficient immobilization of xylanase was observed, with a maximum encapsulation yield and relative activity of 78.5% and 148%, respectively. Immobilized xylanase showed high residual activity at broad pH and temperature ranges. Using birchwood xylan as a substrate, the Vmax and Km values of xylanase nanoflowers were 1.60 mg/ml and 455 µmol/min/mg protein, compared with 1.42 mg/ml and 300 µmol/min/mg protein, respectively, for the free enzyme. After 5 and 10 cycles of reuse, the xylanase nanoflowers retained 87.5% and 75.8% residual activity, respectively. These results demonstrate that xylanase immobilization using a protein-inorganic hybrid nanoflower system is an effective approach for its potential biotechnological applications.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Inmovilización , Xilosidasas/metabolismo , Biotecnología , Activación Enzimática , Pruebas de Enzimas , Estabilidad de Enzimas , Eurotiales/enzimología , Concentración de Iones de Hidrógeno , Compuestos Inorgánicos/química , Cinética , Nanopartículas/química , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA