Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Vet Res ; 77(4): 337-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27027831

RESUMEN

OBJECTIVE: To investigate associations between inertial sensor and stationary force plate measurements of hind limb lameness in horses. ANIMALS: 21 adult horses with no lameness or with mild hind limb lameness. PROCEDURES: Horses were instrumented with inertial sensors and evaluated for lameness with a stationary force plate while trotting in a straight line. Inertial sensor-derived measurements of maximum and minimum pelvic height differences between right and left halves of the stride were compared with vertical and horizontal ground reaction forces (GRFs). Stepwise linear regression was performed to investigate the strength of association between inertial sensor measurements of hind limb lameness and amplitude, impulse, and time indices of important events in the vertical and horizontal GRF patterns. RESULTS: Difference in minimum pelvic position was moderately (Ra(2) = 0.60) associated with the difference in peak vertical GRF but had little association with any horizontal GRF measurements. Difference in maximum pelvic position was strongly (Ra(2) = 0.77) associated with a transfer of vertical to horizontal ground reaction impulse in the second half of the stance but was not associated with difference in peak vertical GRF. CONCLUSIONS AND CLINICAL RELEVANCE: Inertial sensor-derived measurements of asymmetric pelvic fall (difference in minimum pelvic position) indicated a decrease in vertical GRF, but similar measurements of asymmetric pelvis rise (difference in maximum pelvic position) indicated a transfer of vertical to horizontal force impulse in the second half of the stance. Evaluation of both pelvic rise and fall may be important when assessing hind limb lameness in horses.


Asunto(s)
Marcha , Miembro Posterior , Enfermedades de los Caballos/diagnóstico , Pelvis/fisiología , Animales , Fenómenos Biomecánicos , Diseño de Equipo , Femenino , Caballos , Cojera Animal/diagnóstico , Masculino
2.
Am J Vet Res ; 77(10): 1121-31, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27668584

RESUMEN

OBJECTIVE To evaluate head, pelvic, and limb movement to detect lameness in galloping horses. ANIMALS 12 Thoroughbreds. PROCEDURES Movement data were collected with inertial sensors mounted on the head, pelvis, and limbs of horses trotting and galloping in a straight line before and after induction of forelimb and hind limb lameness by use of sole pressure. Successful induction of lameness was determined by measurement of asymmetric vertical head and pelvic movement during trotting. Differences in gallop strides before and after induction of lameness were evaluated with paired-sample statistical analysis and neural network training and testing. Variables included maximum, minimum, range, and time indices of vertical head and pelvic acceleration, head rotation in the sagittal plane, pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead preference. Difference between median standardized gallop strides for each limb lead before and after induction of lameness was calculated as the sum of squared differences at each time index and assessed with a 2-way ANOVA. RESULTS Head and pelvic acceleration and rotation, limb timing, stride duration measurements, and limb lead preference during galloping were not significantly different before and after induction of lameness in the forelimb or hind limb. Differences between limb leads before induction of lameness were similar to or greater than differences within limb leads before and after lameness induction. CONCLUSIONS AND CLINICAL RELEVANCE Galloping horses maintained asymmetry of head, pelvic, and limb motion between limb leads that was unrelated to lameness.


Asunto(s)
Marcha/fisiología , Enfermedades de los Caballos/diagnóstico , Cojera Animal/diagnóstico , Tecnología Inalámbrica/instrumentación , Animales , Fenómenos Biomecánicos , Femenino , Miembro Anterior/fisiopatología , Miembro Posterior/fisiopatología , Enfermedades de los Caballos/fisiopatología , Caballos , Cojera Animal/fisiopatología , Masculino , Movimiento , Condicionamiento Físico Animal , Procesamiento de Señales Asistido por Computador
3.
Am J Vet Res ; 65(5): 665-70, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15141889

RESUMEN

OBJECTIVE: To compare a sensor-based accelerometer-gyroscopic (A-G) system with a video-based motion analysis system (VMAS) technique for detection and quantification of lameness in horses. ANIMALS: 8 adult horses. PROCEDURE: 2 horses were evaluated once, 2 had navicular disease and were evaluated before and after nerve blocks, and 4 had 2 levels of shoe-induced lameness, alternatively, in each of 4 limbs. Horses were instrumented with an accelerometer transducer on the head and pelvis, a gyroscopic transducer on the right forelimb and hind feet, and a receiver-transmitter. Signals from the A-G system were collected simultaneously with those from the VMAS for collection of head, pelvis, and right feet positions with horses trotting on a treadmill. Lameness was detected with an algorithm that quantified lameness as asymmetry of head and pelvic movements. Comparisons between the A-G and VMAS systems were made by use of correlation and agreement (kappa value) analyses. RESULTS: Correlation between the A-G and VMAS systems for quantification of lameness was linear and high (r2 = 0.9544 and 0.8235 for forelimb and hind limb, respectively). Quantification of hind limb lameness with the A-G system was higher than measured via VMAS. Agreement between the 2 methods for detection of lameness was excellent (kappa = 0.76) for the forelimb and good (kappa = 0.56) for the hind limb. CONCLUSIONS AND CLINICAL RELEVANCE: The A-G system detected and quantified forelimb and hind limb lameness in horses trotting on the treadmill. Because the data are collected wirelessly, this system might be used to objectively evaluate lameness in the field.


Asunto(s)
Equipo para Diagnóstico , Miembro Anterior/fisiopatología , Miembro Posterior/fisiopatología , Enfermedades de los Caballos/diagnóstico , Cojera Animal/diagnóstico , Aceleración , Algoritmos , Animales , Fenómenos Biomecánicos , Estudios de Evaluación como Asunto , Caballos , Grabación en Video
4.
Am J Vet Res ; 74(1): 17-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23270341

RESUMEN

OBJECTIVE: To compare data obtained with an inertial sensor system with results of subjective lameness examinations performed by 3 experienced equine veterinarians for evaluation of lameness in horses. ANIMALS: 106 horses. PROCEDURES: Horses were evaluated for lameness with a body-mounted inertial sensor system during trotting in a straight line and via subjective evaluation by 3 experienced equine practitioners who performed complete lameness examinations including lunging in a circle and limb flexion tests. Agreement among evaluators regarding results of subjective evaluations and correlations and agreements between various inertial sensor measures and results of subjective lameness evaluations were determined via calculation of Fleiss' κ statistic, regression analysis, and calculation of 95% prediction intervals. RESULTS: Evaluators agreed on classification of horses into 3 mutually exclusive lameness categories (right limb lameness severity greater than left limb lameness severity, left limb lameness severity greater than right limb lameness severity, or equal right and left limb lameness severity) for 58.8% (κ = 0.37) and 54.7% (κ = 0.31) of horses for forelimb and hind limb lameness, respectively. All inertial sensor measures for forelimb and hind limb lameness were positively and significantly correlated with results of subjective evaluations. Agreement between inertial sensors measures and results of subjective evaluations was fair to moderate for forelimb lameness and slight to fair for hind limb lameness. CONCLUSIONS AND CLINICAL RELEVANCE: Results of lameness evaluation of horses with an inertial sensor system and via subjective lameness examinations were significantly correlated but did not have strong agreement. Inertial sensor-based evaluation may augment but not replace subjective lameness examination of horses.


Asunto(s)
Acelerometría/métodos , Miembro Anterior/fisiopatología , Miembro Posterior/fisiopatología , Enfermedades de los Caballos/diagnóstico , Cojera Animal/diagnóstico , Monitoreo Ambulatorio/métodos , Tecnología Inalámbrica/instrumentación , Acelerometría/veterinaria , Animales , Femenino , Marcha , Enfermedades de los Caballos/fisiopatología , Caballos , Cojera Animal/fisiopatología , Masculino , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/veterinaria , Actividad Motora , Reproducibilidad de los Resultados
5.
Am J Vet Res ; 73(3): 368-74, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22369528

RESUMEN

OBJECTIVE: To assess the analytic sensitivity of an inertial sensor system for detection of the more severely affected forelimb in horses with bilateral lameness. ANIMALS: 18 adult horses with forelimb lameness. PROCEDURES: Horses were fitted with inertial sensors and evaluated for lameness with a stationary force plate as they were trotted in a straight line. Inertial sensor-derived measurements for vertical head movement asymmetry (HMA) and vector sum (VS) of maximum and minimum head height differences between right and left halves of the stride were used to predict differences in mean peak vertical force (PVF) as a percentage of body weight between the right and left forelimbs. Repeatability was compared by calculation of the intraclass correlation coefficient (ICC) for each variable. Correct classification percentages for the lamer forelimb were determined by use of a stationary force plate as the standard. RESULTS: SEs of the prediction of difference in PVF between the right and left forelimbs from HMA and VS were 6.1% and 5.2%, respectively. Head movement asymmetry (ICC, 0.72) was less repeatable than PVF (ICC, 0.86) and VS (ICC, 0.84). Associations were positive and significant between HMA (R(2) = 0.73) and VS (R(2) = 0.81) and the difference in PVF between the right and left forelimbs. Correct classification percentages for HMA and VS for detecting the lamer forelimb were 83.3% and 77.8%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that an inertial sensor system to measure vertical asymmetry (HMA and VS) due to forelimb lameness in horses trotting in a straight line has adequate analytic sensitivity for clinical use. Additional studies are required to assess specificity of the system.


Asunto(s)
Miembro Anterior/fisiopatología , Enfermedades de los Caballos/diagnóstico , Cojera Animal/diagnóstico , Monitoreo Ambulatorio/métodos , Animales , Fenómenos Biomecánicos , Marcha , Enfermedades de los Caballos/fisiopatología , Caballos , Cojera Animal/fisiopatología , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/veterinaria , Actividad Motora , Presión , Tecnología Inalámbrica/instrumentación
6.
Am J Vet Res ; 72(9): 1156-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21879972

RESUMEN

OBJECTIVE: To determine repeatability of a wireless, inertial sensor-based lameness evaluation system in horses. ANIMALS: 236 horses. PROCEDURES: Horses were from 2 to 29 years of age and of various breeds and lameness disposition. All horses were instrumented with a wireless, inertial sensor-based motion analysis system on the head (accelerometer), pelvis (midline croup region [accelerometer]), and right forelimb (gyroscope) before evaluation in 2 consecutive trials, approximately 5 minutes apart, as the horse was trotted in a straight line. Signal-processing algorithms generated overall trial asymmetry measures for vertical head and pelvic movement and stride-by-stride differences in head and pelvic maximum and minimum positions between right and left sides of each stride. Repeatability was determined, and trial difference was determined for groups of horses with various numbers of strides for which data were collected per trial. RESULTS: Inertial sensor-based measures of torso movement asymmetry were repeatable. Repeatability for measures of torso asymmetry for determination of hind limb lameness was slightly greater than that for forelimb lameness. Collecting large numbers of strides degraded stride-to-stride repeatability but did not degrade intertrial repeatability. CONCLUSIONS AND CLINICAL RELEVANCE: The inertial sensor system used to measure asymmetry of head and pelvic movement as an aid in the detection and evaluation of lameness in horses trotting in a straight line was sufficiently repeatable to investigate for clinical use.


Asunto(s)
Miembro Anterior/fisiopatología , Miembro Posterior/fisiopatología , Enfermedades de los Caballos/diagnóstico , Cojera Animal/diagnóstico , Monitoreo Ambulatorio/métodos , Tecnología Inalámbrica/instrumentación , Algoritmos , Animales , Femenino , Marcha , Cabeza/fisiología , Enfermedades de los Caballos/fisiopatología , Caballos , Cojera Animal/fisiopatología , Masculino , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/veterinaria , Actividad Motora , Pelvis/fisiología , Reproducibilidad de los Resultados , Torso/fisiología
7.
Biomed Sci Instrum ; 38: 107-12, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12085585

RESUMEN

Video-based kinematic analysis of gait in horses is accurate for quantification of lameness and reliable for identification of the affected limb. Algorithms for the measurement of the vertical head and pelvic displacement and phase correlation with vertical displacement of one forelimb and hindlimb foot have been developed for this purpose. However, because of camera field-of-view limitations, video-based analysis of gait can only be reliably accomplished with the horse constrained to move on a treadmill. This paper describes the use of 2 single-axis accelerometers and 2 gyroscopic transducers as a measurement system for the identification and quantification of forelimb and hindlimb lameness in horses. Vertical head and pelvic acceleration are converted to displacement, lameness is quantified from previously developed algorithms, and affected limb is determined by correlation of head and pelvic signals with gyroscopic signals from the right forelimb and hindlimb feet. Signals from the 4 transducers are telemeterized at 200 Hz and collected to a receiver connected to a lap top computer, freeing the horse from the constraints of a treadmill laboratory setting. In this paper we describe the reliability of this new accelerometer-based system in horses with induced lameness while trotting on a treadmill and freely outside overground.


Asunto(s)
Prueba de Esfuerzo/instrumentación , Marcha , Enfermedades de los Caballos/diagnóstico , Cojera Animal/diagnóstico , Grabación en Video/métodos , Animales , Fenómenos Biomecánicos , Diagnóstico por Computador , Diseño de Equipo , Prueba de Esfuerzo/métodos , Caballos , Modelos Biológicos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA