Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36161446

RESUMEN

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Asunto(s)
ARN Helicasas DEAD-box , VIH-1 , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/fisiología , Virus ARN Monocatenarios Positivos/fisiología , SARS-CoV-2/fisiología
2.
RNA Biol ; 19(1): 191-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35067194

RESUMEN

Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5' gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.


Asunto(s)
Regiones no Traducidas 5' , Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , ARN Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Viral/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Replicación Viral
3.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799890

RESUMEN

Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.


Asunto(s)
VIH-1/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , VIH-1/genética , Humanos , Precursores de Proteínas/genética , ARN Viral/genética , Ensamble de Virus/genética , Replicación Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
4.
Biophys J ; 119(2): 419-433, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32574557

RESUMEN

The human immunodeficiency virus type 1 Gag precursor specifically selects the unspliced viral genomic RNA (gRNA) from the bulk of cellular and spliced viral RNAs via its nucleocapsid (NC) domain and drives gRNA encapsidation at the plasma membrane (PM). To further identify the determinants governing the intracellular trafficking of Gag-gRNA complexes and their accumulation at the PM, we compared, in living and fixed cells, the interactions between gRNA and wild-type Gag or Gag mutants carrying deletions in NC zinc fingers (ZFs) or a nonmyristoylated version of Gag. Our data showed that the deletion of both ZFs simultaneously or the complete NC domain completely abolished intracytoplasmic Gag-gRNA interactions. Deletion of either ZF delayed the delivery of gRNA to the PM but did not prevent Gag-gRNA interactions in the cytoplasm, indicating that the two ZFs display redundant roles in this respect. However, ZF2 played a more prominent role than ZF1 in the accumulation of the ribonucleoprotein complexes at the PM. Finally, the myristate group, which is mandatory for anchoring the complexes at the PM, was found to be dispensable for the association of Gag with the gRNA in the cytosol.


Asunto(s)
VIH-1 , Membrana Celular , Genómica , VIH-1/genética , Humanos , ARN Guía de Kinetoplastida , ARN Viral , Ensamble de Virus , Dedos de Zinc
5.
Retrovirology ; 17(1): 25, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807178

RESUMEN

BACKGROUND: Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. More than 50 different transcripts can be generated from a single HIV-1 unspliced pre-messenger RNA (pre-mRNA) and a balanced proportion of unspliced and spliced transcripts is critical for the production of infectious virions. Understanding the mechanisms involved in the regulation of viral RNA is therefore of potential therapeutic interest. However, monitoring the regulation of alternative splicing events at a transcriptome-wide level during cell infection is challenging. Here we used the long-read cDNA sequencing developed by Oxford Nanopore Technologies (ONT) to explore in a quantitative manner the complexity of the HIV-1 transcriptome regulation in infected primary CD4+ T cells. RESULTS: ONT reads mapping to the viral genome proved sufficiently long to span all possible splice junctions, even distant ones, and to be assigned to a total of 150 exon combinations. Fifty-three viral RNA isoforms, including 14 new ones were further considered for quantification. Relative levels of viral RNAs determined by ONT sequencing showed a high degree of reproducibility, compared favourably to those produced in previous reports and highly correlated with quantitative PCR (qPCR) data. To get further insights into alternative splicing regulation, we then compiled quantifications of splice site (SS) usage and transcript levels to build "splice trees", a quantitative representation of the cascade of events leading to the different viral isoforms. This approach allowed visualizing the complete rewiring of SS usages upon perturbation of SS D2 and its impact on viral isoform levels. Furthermore, we produced the first dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection. In particular, our data highlighted the importance of non-coding exons in viral RNA transcriptome regulation. CONCLUSION: ONT sequencing is a convenient and reliable strategy that enabled us to grasp the dynamic of the early splicing events modulating the viral RNA landscape in HIV-1 infected cells.


Asunto(s)
Empalme Alternativo/genética , Infecciones por VIH/virología , VIH-1/genética , ARN Viral/genética , Linfocitos T CD4-Positivos/virología , Regulación Viral de la Expresión Génica , Humanos , Secuenciación de Nanoporos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN , ARN Viral/metabolismo , Transcriptoma , Virión/genética
6.
Nucleic Acids Res ; 46(9): e57, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29514260

RESUMEN

Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.


Asunto(s)
VIH-1/genética , ARN Viral/biosíntesis , ARN Viral/química , Secuencias Reguladoras de Ácido Ribonucleico , Ensamble de Virus , Regiones no Traducidas 5' , Genoma Viral , Células HEK293 , VIH-1/fisiología , Humanos , Mutación , Motivos de Nucleótidos , Poli A/metabolismo , Replicación Viral
7.
Virologie (Montrouge) ; 24(6): 381-418, 2020 12 01.
Artículo en Francés | MEDLINE | ID: mdl-33441290

RESUMEN

The innate immune response is nonspecific and constitutes the first line of defense against infections by pathogens, mainly by enabling their elimination by phagocytosis or apoptosis. In immune cells, this response is characterized, amongst others, by the synthesis of restriction factors, a class of proteins whose role is to inhibit viral replication. Among them, the proteins of the APOBEC3 (Apolipoprotein B mRNA-editing Enzyme Catalytic polypeptide-like 3 or A3) family are major antiviral factors that target a wide range of viruses. One of their targets is the Human Immunodeficiency Virus Type 1 (HIV-1): the deaminase activity of some A3 proteins converts a fraction of cytidines of the viral genome into uridines, impairing its expression. Nevertheless, HIV-1 counteracts A3 proteins thanks to its Vif protein, which inhibits them by hijacking several cellular mechanisms. Besides, APOBEC3 proteins help maintaining the genome integrity by inhibiting retroelements but they also contribute to carcinogenesis, as it is the case for A3A and A3B, two major factors in this process. The large range of A3 activities, combined with recent studies showing their implication in the regulation of emerging viruses (Zika, SARS-CoV-2), allow A3 and their viral partners to be considered as therapeutic areas.


Asunto(s)
Desaminasas APOBEC/fisiología , COVID-19/inmunología , Inmunidad Innata , Adulto , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Citidina Desaminasa/fisiología , Reparación del ADN , ADN Viral/metabolismo , Desaminación , Humanos , Mamíferos/metabolismo , MicroARNs/genética , Modelos Moleculares , Terapia Molecular Dirigida , Mutagénesis , Neoplasias/enzimología , Neoplasias/etiología , Neoplasias/genética , Pronóstico , Conformación Proteica , Edición de ARN , Relación Estructura-Actividad , Transcripción Genética , Proteínas Virales/metabolismo , Virosis/tratamiento farmacológico , Virosis/enzimología , Virosis/inmunología , Replicación Viral
8.
Nucleic Acids Res ; 45(7): 4158-4173, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28003477

RESUMEN

Argonaute (Ago) proteins associate with microRNAs (miRNAs) to form the core of the RNA-induced silencing complex (RISC) that mediates post-transcriptional gene silencing of target mRNAs. As key players in anti-viral defense, Ago proteins are thought to have the ability to interact with human immunodeficiency virus type 1 (HIV-1) RNA. However, the role of this interaction in regulating HIV-1 replication has been debated. Here, we used high throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to explore the interaction between Ago2 and HIV-1 RNA in infected cells. By only considering reads of 50 nucleotides length in our analysis, we identified more than 30 distinct binding sites for Ago2 along the viral RNA genome. Using reporter assays, we found four binding sites, located near splice donor sites, capable of repressing Luciferase gene expression in an Ago-dependent manner. Furthermore, inhibition of Ago1 and Ago2 levels in cells expressing HIV-1 led to an increase of viral multiply spliced transcripts and to a strong reduction in the extracellular CAp24 level. Depletion of Dicer did not affect these activities. Our results highlight a new role of Ago proteins in the control of multiply spliced HIV-1 transcript levels and viral production, independently of the miRNA pathway.


Asunto(s)
Empalme Alternativo , Proteínas Argonautas/metabolismo , VIH-1/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Genoma Viral , Células HEK293 , VIH-1/fisiología , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Células Jurkat , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Viral/química , Ribonucleasa III/metabolismo , Análisis de Secuencia de ARN , Virión/fisiología
9.
Nat Methods ; 12(9): 866-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237229

RESUMEN

RNA regulates many biological processes; however, identifying functional RNA sequences and structures is complex and time-consuming. We introduce a method, mutational interference mapping experiment (MIME), to identify, at single-nucleotide resolution, the primary sequence and secondary structures of an RNA molecule that are crucial for its function. MIME is based on random mutagenesis of the RNA target followed by functional selection and next-generation sequencing. Our analytical approach allows the recovery of quantitative binding parameters and permits the identification of base-pairing partners directly from the sequencing data. We used this method to map the binding site of the human immunodeficiency virus-1 (HIV-1) Pr55(Gag) protein on the viral genomic RNA in vitro, and showed that, by analyzing permitted base-pairing patterns, we could model RNA structure motifs that are crucial for protein binding.


Asunto(s)
Mutagénesis Sitio-Dirigida/métodos , Precursores de Proteínas/química , Precursores de Proteínas/genética , ARN Viral/química , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Datos de Secuencia Molecular , Mutación/genética , Relación Estructura-Actividad
10.
RNA Biol ; 15(7): 923-936, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29954247

RESUMEN

The Pr55Gag precursor specifically selects the HIV-1 genomic RNA (gRNA) from a large excess of cellular and partially or fully spliced viral RNAs and drives the virus assembly at the plasma membrane. During these processes, the NC domain of Pr55Gag interacts with the gRNA, while its C-terminal p6 domain binds cellular and viral factors and orchestrates viral particle release. Gag∆p6 is a truncated form of Pr55Gag lacking the p6 domain usually used as a default surrogate for wild type Pr55Gag for in vitro analysis. With recent advance in production of full-length recombinant Pr55Gag, here, we tested whether the p6 domain also contributes to the RNA binding specificity of Pr55Gag by systematically comparing binding of Pr55Gag and Gag∆p6 to a panel of viral and cellular RNAs. Unexpectedly, our fluorescence data reveal that the p6 domain is absolutely required for specific binding of Pr55Gag to the HIV-1 gRNA. Its deletion resulted not only in a decreased affinity for gRNA, but also in an increased affinity for spliced viral and cellular RNAs. In contrast Gag∆p6 displayed a similar affinity for all tested RNAs. Removal of the C-terminal His-tag from Pr55Gag and Gag∆p6 uniformly increased the Kd values of the RNA-protein complexes by ~ 2.5 fold but did not affect the binding specificities of these proteins. Altogether, our results demonstrate a novel role of the p6 domain in the specificity of Pr55Gag-RNA interactions, and strongly suggest that the p6 domain contributes to the discrimination of HIV-1 gRNA from cellular and spliced viral mRNAs, which is necessary for its selective encapsidation.


Asunto(s)
Genoma Viral/genética , VIH-1/fisiología , Precursores de Proteínas/metabolismo , ARN Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , VIH-1/genética , Humanos , Mutación , Plásmidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores de Proteínas/genética , ARN Viral/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
11.
RNA Biol ; 14(1): 90-103, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27841704

RESUMEN

The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.


Asunto(s)
Genoma Viral , VIH-1/genética , VIH-1/metabolismo , Precursores de Proteínas/metabolismo , Empalme del ARN , ARN Viral/genética , ARN Viral/metabolismo , Sitios de Unión , Humanos , Secuencias Invertidas Repetidas , Cinética , Mutación , Conformación de Ácido Nucleico , ARN Viral/química , Proteínas de Unión al ARN/metabolismo
12.
J Biol Chem ; 290(1): 371-83, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25398876

RESUMEN

Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively.


Asunto(s)
Fármacos Anti-VIH/química , Transcriptasa Inversa del VIH/genética , VIH-1/genética , Ensayos Analíticos de Alto Rendimiento/economía , Mutágenos/química , Inhibidores de la Transcriptasa Inversa/química , Fármacos Anti-VIH/metabolismo , Fármacos Anti-VIH/farmacología , Disparidad de Par Base , Emparejamiento Base , Secuencia de Bases , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacología , Diseño de Fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , VIH-1/efectos de los fármacos , VIH-1/enzimología , Datos de Secuencia Molecular , Mutagénesis , Mutágenos/metabolismo , Mutágenos/farmacología , Desnaturalización de Ácido Nucleico , Valor Predictivo de las Pruebas , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Transcripción Reversa , Termodinámica , Timidina/análogos & derivados , Timidina/química , Timidina/metabolismo , Timidina/farmacología , Factores de Tiempo
13.
Retrovirology ; 13(1): 54, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515235

RESUMEN

BACKGROUND: In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. RESULTS: Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. CONCLUSIONS: Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly.


Asunto(s)
VIH-1/fisiología , Modelos Moleculares , ARN Viral/química , Proteínas Ribosómicas/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Dimerización , VIH-1/genética , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , ARN Viral/metabolismo , Proteínas Ribosómicas/genética , Ensamble de Virus , Dedos de Zinc , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
14.
Proc Natl Acad Sci U S A ; 110(31): 12655-60, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23852730

RESUMEN

The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the ß-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.


Asunto(s)
Cardiomegalia/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Células HEK293 , Humanos , Ratones , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Estructura Secundaria de Proteína , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
15.
Retrovirology ; 12: 53, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26105074

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS: We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor ß (CBF-ß), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-ß-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS: Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.


Asunto(s)
Autofagia , Citidina Desaminasa/metabolismo , VIH-1/fisiología , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Células Epiteliales/virología , Histona Desacetilasa 6 , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis
16.
J Virol ; 87(11): 6492-506, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576497

RESUMEN

The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell.


Asunto(s)
Citidina Desaminasa/metabolismo , Infecciones por VIH/enzimología , VIH-1/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Secuencias de Aminoácidos , Citidina Desaminasa/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Humanos , Multimerización de Proteína , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
17.
RNA Biol ; 11(7): 906-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144404

RESUMEN

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity.


Asunto(s)
VIH-1/metabolismo , Chaperonas Moleculares/metabolismo , ARN de Transferencia/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
18.
Nucleic Acids Res ; 40(5): 2197-209, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22075989

RESUMEN

The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common 'transition zone' located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5' region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/genética , ARN Viral/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Virales/ultraestructura , Virión/ultraestructura , Ensamble de Virus , Animales , Células Cultivadas , Perros , Genoma Viral , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/ultraestructura , ARN Viral/química
19.
Nucleic Acids Res ; 39(6): 2404-15, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21076154

RESUMEN

The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain (161)PPLP(164) regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the (161)PPLP(164) domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of ß-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs.


Asunto(s)
Proteínas de Unión al ARN/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Fluorescencia , VIH-1/genética , Mutación , Prolina/genética , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
20.
Nucleic Acids Res ; 38(2): 633-46, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19910370

RESUMEN

The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3'UTR than for the 5'UTR, even though this region contained at least one high affinity Vif binding site (apparent K(d) = 27 +/- 6 nM). Several Vif binding sites were identified in 5' and 3'UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5'UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes.


Asunto(s)
Citidina Desaminasa/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Desaminasa APOBEC-3G , Sitios de Unión , Citidina Desaminasa/metabolismo , Humanos , Mutación , Huella de Proteína , Espectrometría de Fluorescencia , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA