RESUMEN
BACKGROUND: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition. METHODS: Here, we leveraged 2 models of in vitro cultured adult mouse cardiomyocytes and in vivo adeno-associated virus serotype 9 cardiomyocyte-targeted delivery of reprogramming factors (Oct4, Sox2, Klf4, and Myc) in adult mice to study CMDD. We profiled their transcriptomes using RNA sequencing, in combination with multiple published data sets, with the aim of identifying a common denominator for tracking CMDD. RESULTS: RNA sequencing and integrated analysis identified Asparagine Synthetase (Asns) as a unique molecular marker gene well correlated with CMDD, required for increased asparagine and also for distinct fluxes in other amino acids. Although Asns overexpression in Oct4, Sox2, Klf4, and Myc cardiomyocytes augmented hallmarks of CMDD, Asns deficiency led to defective regeneration in the neonatal mouse myocardial infarction model, increased cell death of cultured adult cardiomyocytes, and reduced cell cycle in Oct4, Sox2, Klf4, and Myc cardiomyocytes, at least in part through disrupting the mammalian target of rapamycin complex 1 pathway. CONCLUSIONS: We discovered a novel gene Asns as both a molecular marker and an essential mediator, marking a distinct threshold that appears in common for at least 4 models of CMDD, and revealing an Asns/mammalian target of rapamycin complex 1 axis dependency for dedifferentiating cardiomyocytes. Further study will be needed to extrapolate and assess its relevance to other cell state transitions as well as in heart regeneration.
Asunto(s)
Aspartatoamoníaco Ligasa , Desdiferenciación Celular , Factor 4 Similar a Kruppel , Miocitos Cardíacos , Animales , Ratones , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Células Cultivadas , Miocitos Cardíacos/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismoRESUMEN
BACKGROUND: There is limited data on the mechanisms of aspirin desensitization in patients with nonsteroidal anti-inflammatory drug (NSAID)-induced urticaria/angioedema (NIUA). OBJECTIVES: We sought to characterize the transcriptomic and metabolomic profiles of patients with NIUA undergoing aspirin desensitization. METHODS: PBMCs and plasma were separated from the blood of patients with NIUA undergoing aspirin desensitization for coronary artery disease and NSAID-tolerant controls. RNA was isolated from PBMCs and subjected to messenger RNA (mRNA)- and long noncoding RNA (lncRNA)-sequencing. Plasma samples were analyzed using LC-MS/MS for metabolite shifts using a semitargeted metabolomics panel. RESULTS: Eleven patients with NIUA and 10 healthy controls were recruited. The mRNA gene profiles of predesensitization versus postdesensitization and healthy control versus postdesensitization did not differ significantly. However, we identified 739 mRNAs and 888 lncRNAs as differentially expressed from preaspirin desensitization patients and controls. A 12-mRNA gene signature was trained using a machine learning algorithm to distinguish between controls, postdose, and predose samples. Ingenuity Pathway Analysis identified 5 canonical pathways that were significantly enriched in preaspirin desensitization samples. IL-22 was the most upregulated pathway. To investigate the potential regulatory roles of the differentially expressed lncRNA on the mRNAs, 9 lncRNAs and 12 mRNAs showed significantly correlated expression patterns in the IL-22 pathway. To validate the transcriptomics data, IL-22 was measured in the plasma samples of the subjects using ELISA. IL-22 was significantly higher in preaspirin desensitization patients compared with controls. In parallel, metabolomic analysis revealed stark differences in plasma profiles of preaspirin desensitization patients and healthy controls. In particular, 2-hydroxybenzoic acid (salicylic acid) was significantly lower in preaspirin desensitization patients compared with healthy controls. CONCLUSIONS: This is the first study to combine both transcriptomic and metabolomic approaches in patients with NIUA, which contributes to a deeper understanding about the pathogenesis of NIUA and may potentially pave the way toward a molecular diagnosis of NSAID hypersensitivity.
Asunto(s)
Angioedema , Antiinflamatorios no Esteroideos , Aspirina , Urticaria , Humanos , Aspirina/efectos adversos , Cromatografía Liquida , ARN Largo no Codificante , ARN Mensajero , Espectrometría de Masas en Tándem , Antiinflamatorios no Esteroideos/efectos adversos , Urticaria/inducido químicamente , Angioedema/inducido químicamente , Desensibilización InmunológicaRESUMEN
Reproductive aging is a major cause of fertility decline, attributed to decreased oocyte quantity and developmental potential. A possible cause is aging of the surrounding follicular somatic cells that support oocyte growth and development by providing nutrients and regulatory factors. Here, by creating chimeric follicles, whereby an oocyte from one follicle was transplanted into and cultured within another follicle whose native oocyte was removed, we show that young oocytes cultured in aged follicles exhibited impeded meiotic maturation and developmental potential, whereas aged oocytes cultured within young follicles were significantly improved in rates of maturation, blastocyst formation and live birth after in vitro fertilization and embryo implantation. This rejuvenation of aged oocytes was associated with enhanced interaction with somatic cells, transcriptomic and metabolomic remodeling, improved mitochondrial function and higher fidelity of meiotic chromosome segregation. These findings provide the basis for a future follicular somatic cell-based therapy to treat female infertility.
Asunto(s)
Oocitos , Folículo Ovárico , Rejuvenecimiento , Femenino , Animales , Folículo Ovárico/crecimiento & desarrollo , Rejuvenecimiento/fisiología , Ratones , Fertilización In Vitro/métodos , Senescencia Celular , Meiosis , Microambiente Celular , Envejecimiento/fisiologíaRESUMEN
Eating late in the day is associated with circadian desynchrony, resulting in dysregulated metabolism and increased cardiometabolic disease risk. However, the underlying mechanisms remain unclear. Using targeted metabolomics of postprandial plasma samples from a secondary analysis of a randomised 2 × 2 crossover study in 36 healthy older Chinese adults, we have compared postprandial metabolic responses between high (HI) glycemic index (GI) or low-GI (LO) meals, consumed either at breakfast (BR) or at dinner (DI). 29 out of 234 plasma metabolites exhibited significant differences (p < 0.05) in postprandial AUC between BR and DI sessions, whereas only five metabolites were significantly different between HI and LO sessions. There were no significant interactions between intake timing and meal GI. Lower glutamine: glutamate ratio, lower lysine and higher trimethyllysine (TML) levels were found during DI compared with BR, along with greater postprandial reductions (δAUC) in creatine and ornithine levels during DI, indicating a worse metabolic state during the evening DI period. Greater reductions (δAUC) in postprandial creatine and ornithine were also observed during HI compared with LO (both p < 0.05). These metabolomic changes may indicate potential molecular signatures and/or pathways linking metabolic responses with cardiometabolic disease risk between different meal intake timings and/or meals with variable GI.
RESUMEN
Background: We aimed to determine primary markers of oxidative stress (OS) in ED patients which predict hospital length of stay (LoS), intensive care unit (ICU) LoS, and sepsis severity. Materials and methods: This prospective, single center observational study was conducted in adult patients recruited from the ED who were diagnosed with either sepsis, infection without sepsis, or non-infectious, age-matched controls. 290 patients were admitted to the hospital and 24 patients had direct admission to the ICU. A panel of 269 OS and related metabolic markers were profiled for each cohort. Clinical outcomes were direct ICU admission, hospital LoS, ICU LoS, and post-hoc, adjudicated sepsis severity scoring. Bonferroni correction was used for pairwise comparisons. Principal component regression was used for dimensionality reduction and selection of plasma metabolites associated with sepsis. Multivariable negative binomial regression was applied to predict admission, hospital, and ICU LoS. Results: Homoarginine (hArg) was the top discriminator of sepsis severity [sepsis vs. control: ROC-AUC = 0.86 (95% CI 0.81-0.91)], [sepsis vs. infection: ROC-AUC = 0.73 (95% CI 0.68-0.78)]. The 25th percentile of hArg [odds ratio (OR) = 8.57 (95% CI 1.05-70.06)] was associated with hospital LoS [IRR = 2.54 (95% CI 1.83-3.52)] and ICU LOS [IRR = 18.73 (95% CI 4.32-81.27)]. In prediction of outcomes, hArg had superior performance compared to arginine (Arg) [hArg ROC-AUC = 0.77 (95% CI 0.67-0.88) vs. Arg ROC-AUC = 0.66 (95% CI 0.55-0.78)], and dimethylarginines [SDMA ROC-AUC 0.68 (95% CI 0.55-0.79) and ADMA ROC-AUC = 0.68 (95% CI 0.56-0.79)]. Ratio of hArg and Arg/NO metabolic markers and creatinine clearance provided modest improvements in clinical prediction. Conclusion: Homoarginine is associated with sepsis severity and predicts hospital and ICU LoS, making it a useful biomarker in guiding treatment decisions for ED patients.
RESUMEN
Background: Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium-mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods: 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 âmT for 10 âmin) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results: Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi â+ âPCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion: The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article: Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.
RESUMEN
While dietary or supplementary antioxidants are thought to inhibit or delay oxidation of biological molecules, their utility in vivo has been marred by equivocal evidence. Consumption of polyphenol rich foods has been thought to alleviate postprandial oxidative stress and/or improve endothelial function. Although, previous studies suggested the utility of allantoin as a biomarker of oxidative stress, controlled dose response studies with dietary antioxidants to test this in humans have been limited. We therefore investigated the effects of 2 doses of polyphenol rich curry consumption on postprandial plasma concentrations of allantoin, allantoin to uric acid ratio, F2-isoprostanes using liquid chromatography-tandem mass spectrometry (LCMS-MS) and measured endothelial function using peripheral arterial tonometry (endoPAT). In a randomized controlled crossover trial in 17 non-smoking, healthy, Chinese men, aged 23.7 ± 2.4 years and BMI 23.1 ± 2.3 kg/m2, the volunteers consumed 3 test meals in a random order, consisting of either non-curry Dose 0 Control (D0C, 0 g spices), or Dose 1 Curry (D1C, 6 g spices) or Dose 2 Curry (D2C, 12 g spices), after overnight fast. There were significant reductions in postprandial allantoin concentrations (p < 0.001) and allantoin to uric acid ratio (p < 0.001) at 2 h and 3 h following test meal consumption, indicating improvements in postprandial redox balance with increasing curry doses, although there were no differences between treatments on F2-isoprostane concentrations or on RHI (measured at 2 h only). Allantoin may have a utility as a biomarker of redox balance, in an acute setting. The study was registered at www.clinicaltrials.gov (Identifier No. NCT02599272).