Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Bioprocess Biosyst Eng ; 47(1): 91-103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085351

RESUMEN

A continuous stirred tank bioreactor (CSTB) with cell recycling combined with ceramic membrane technology and inoculated with Rhodococcus opacus PD630 was employed to treat petroleum refinery wastewater for simultaneous chemical oxygen demand (COD) removal and lipid production from the retentate obtained during wastewater treatment. In the present study, the COD removal efficiency (CODRE) (%) and lipid concentration (g/L) were predicted using two artificial intelligence models, i.e., an artificial neural network (ANN) and a neuro-fuzzy neural network (NF-NN) with a network topology of 6-25-2 being the best for NF-NN. The results revealed the superiority of NF-NN over ANN in terms of determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Three learning algorithms were tested with NF-NN; among them, the Bayesian regularization backpropagation (BR-BP) outperformed others. The sensitivity analysis revealed that, if solid retention time and biomass concentrations were maintained between 35 and 75 h and 3.0 g/L and 3.5 g/L, respectively, high CODRE (93%) and lipid concentration (2.8 g/L) could be obtained consistently.


Asunto(s)
Inteligencia Artificial , Petróleo , Eliminación de Residuos Líquidos/métodos , Teorema de Bayes , Reactores Biológicos , Cerámica , Lípidos
2.
J Environ Manage ; 370: 122386, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260284

RESUMEN

The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.

3.
Biometals ; 36(5): 1047-1058, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165109

RESUMEN

Metallic nanoparticles (NPs) find applications in many different industrial sectors. However, the fate of these NPs in the environment and their potential impact on organisms living in different ecosystems are not fully known. In this work, the individual effect of biogenic and chemically synthesized lead sulfide nanoparticles (PbSNPs) and cadmium sulfide nanoparticles (CdSNPs) on the activity of the oleaginous bacterium Rhodococcus opacus PD630 which belongs to an ecologically important genus Rhodococcus was investigated. A dose-dependent increase in PbSNPs and CdSNPs uptake by the bacterium was observed upto a maximum of 16.4 and 15.6 mg/g cell, corresponding to 98% and 95% uptake. In the case of chemically synthesized NPs, the specific PbSNPs and CdSNPs uptake were slightly less [15.5 and 14.8 mg/g cell], corresponding to 93.2% and 88.4% uptake. Both biogenic and chemically synthesized PbSNPs and CdSNPs did not affect the bacterial growth. On the other hand, the triacylglycerol (biodiesel) content in the bacterium increased from 30% to a maximum of 75% and 73% CDW due to oxidative stress induced by biogenic PbSNPs and CdSNPs. The results of induced oxidative stress by biogenic metal nanoparticle were similar to that induced by the chemically synthesized NPs.


Asunto(s)
Nanopartículas del Metal , Rhodococcus , Ecosistema , Triglicéridos , Estrés Oxidativo , Nanopartículas del Metal/toxicidad
4.
Environ Res ; 219: 115073, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535392

RESUMEN

Selenite (Se4+) is the most toxic of all the oxyanion forms of selenium. In this study, a feed forward back propagation (BP) based artificial neural network (ANN) model was developed for a fungal pelleted airlift bioreactor (ALR) system treating selenite-laden wastewater. The performance of the bioreactor, i.e., selenite removal efficiency (REselenite) (%) was predicted through two input parameters, namely, the influent selenite concentration (ICselenite) (10 mg/L - 60 mg/L) and hydraulic retention time (HRT) (24 h - 72 h). After training and testing with 96 sets of data points using the Levenberg-Marquardt algorithm, a multi-layer perceptron model (2-10-1) was established. High values of the correlation coefficient (0.96 ≤ R ≤ 0.98), along with low root mean square error (1.72 ≤ RMSE ≤ 2.81) and mean absolute percentage error (1.67 ≤ MAPE ≤ 2.67), clearly demonstrate the accuracy of the ANN model (> 96%) when compared to the experimental data. To ensure an efficient and economically feasible operation of the ALR, the process parameters were optimized using the particle swarm optimization (PSO) algorithm coupled with the neural model. The REselenite was maximized while minimizing the HRT for a preferably higher range of ICselenite. Thus, the most favourable optimum conditions were suggested as: ICselenite - 50.45 mg/L and HRT - 24 h, resulting in REselenite of 69.4%. Overall, it can be inferred that ANN models can successfully substitute knowledge-based models to predict the REselenite in an ALR, and the process parameters can be effectively optimized using PSO.


Asunto(s)
Ácido Selenioso , Aguas Residuales , Redes Neurales de la Computación , Algoritmos , Reactores Biológicos
5.
Biodegradation ; 34(6): 533-548, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37354273

RESUMEN

Endocrine-disrupting phthalates (EDPs) are widely used as plasticizers for the manufacture of different plastics and polyvinyl chloride by providing flexibility and mechanical strength. On the other hand, they are categorized under priority pollutants list due to their threat to human health and the environment. This study examined biodegradation of a mixture of dimethyl, diethyl, dibutyl, benzyl butyl, di-2-ethylhexyl, and di-n-octyl phthalates using a CSTB (continuous stirred tank bioreactor) operated under batch, fed-batch, continuous, and continuous with biomass recycle operation modes. For operating the CSTB under biomass recycle mode, microfiltration using an indigenous tubular ceramic membrane was employed. Ecotoxicity assessment of the treated water was carried out to evaluate the toxicity removal efficiency by the integrated bioreactor system. From the batch experiments, the EDPs cumulative degradation values were 90 and 75% at 1250 and 1500 mg/L total initial concentration of the mixture, respectively, whereas complete degradation was achieved at 750 mg/L. In the fed-batch study, 93% degradation was achieved at 1500 mg/L total initial concentration of the mixture. In continuous operation mode, 94 and 85% degradation efficiency values were achieved at 43.72 and 52.08 mg/L⋅h inlet loading rate of phthalate mixture. However, continuous feeding with 100% biomass recycle revealed complete degradation at 41.67 mg/L⋅h inlet loading rate within the 84 h operation period. High seed germination index and low mortality percentage of brine shrimps observed with phthalate degraded water from the integrated bioreactor system revealed its excellent potential in the treatment and toxicity removal of phthalates contaminated environment.


Asunto(s)
Ácidos Ftálicos , Aguas Residuales , Humanos , Ácidos Ftálicos/metabolismo , Plastificantes , Agua , Reactores Biológicos , Biodegradación Ambiental
6.
J Environ Manage ; 301: 113871, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619589

RESUMEN

Membrane photosynthetic microbial fuel cell (MPMFC) utilizes O2, NO3- and NO2- as cathodic electron acceptors, enabling simultaneous treatment of nitrogen, CO2 and organic carbon in the cathode compartment. In this work, development of a novel cathodic process with in situ nitritation via microalgal photosynthesis during the light period is reported for achieving shortcut nitrogen removal (SNR) from ammonium-rich wastewater. Moreover, a tubular low-cost ceramic membrane was used to separate and recycle the microalgal-bacterial biomass to the cathode compartment during the continuous operation. The influence of NH4+ concentration and ratio of chemical oxygen demand to total nitrogen on the MPMFC performance was examined. Denitritation under dark and anoxic conditions occurred due to denitrifying bacteria (DNB) subsequent to nitritation under light and aerobic conditions by ammonia-oxidizing bacteria (AOB) in the consortia. Final concentrations of NH4+ and NO2- in the effluent of 0.10 mg NH4+-L-1 and 0.02 mg NO2--L-1, respectively, were obtained using MPMFC which resulted in a nitrogen removal efficiency of 99 ± 0.5%. The maximum electricity production achieved using the MPMFC was 56 ± 0.1 mA. This study demonstrated that combining microalgal photosynthesis, nitritation and denitritation in the cathode compartment of MPMFC is advantageous for avoiding the cost due to external aeration and organic carbon source necessary for ammonium removal as well as utilization of NO2- or NO3- as an electron acceptor.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microalgas , Bacterias , Reactores Biológicos , Desnitrificación , Nitrógeno , Fotosíntesis , Aguas Residuales/análisis
7.
J Environ Manage ; 299: 113591, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455350

RESUMEN

An annular bioreactor (ABR) with wide gap was used for PHB production from Ralstonia eutropha. Hydrodynamic studies demonstrated the uniform distribution of fluid in the ABR due to the Taylor-Couette flow. Thereafter, the ABR was operated at different agitation and sparging rates to study its effect on R. eutropha growth and PHB production. The ABR operated at 500 rpm with air sparge rate of 0.8 vvm yielded a maximum PHB concentration of 14.89 g/L, which was nearly 1.4 times that obtained using a conventional stirred-tank bioreactor (STBR). Furthermore, performances of the bioreactors were compared by operating the reactors under fed-batch mode. At the end of 90 h of operation, the ABR resulted in a very high PHB production of 70.8 g/L. But STBR resulted in a low PHB concentration of 44.2 g/L. The superior performance was due to enhanced oxygen and nutrient mass transfer in the ABR.


Asunto(s)
Cupriavidus necator , Reactores Biológicos , Galactanos , Hidroxibutiratos , Mananos , Extractos Vegetales , Gomas de Plantas , Poliésteres
8.
J Environ Manage ; 278(Pt 2): 111555, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33157464

RESUMEN

Biological sulfide precipitation by sulfate reducing bacteria (SRB) is an emerging technique for the recovery of heavy metals from metal contaminated wastewater. Advantages of this technique include low capital cost, ability to form highly insoluble salts, and capability to remove and recover heavy metals even at very low concentrations. Therefore, sulfate reduction under anaerobic conditions has become a suitable alternative for the treatment of wastewaters that contain metals. However, bioreactor configurations for recovery of metals from sulfate rich metallic wastewater have not been explored widely. Moreover, the recovered metal sulfide nanoparticles could be applied in various fields such as solar cells, dye degradation, electroplating, etc. Hence, metal recovery in the form of nanoparticles from wastewater could serve as an incentive for industries. The simultaneous metal removal and recovery can be achieved in either a single-stage or multistage systems. This paper aims to present an overview of the different bioreactor configurations for the treatment of wastewater containing sulfate and metal along with their advantages and drawbacks for metal recovery. Currently followed biological strategies to mitigate sulfate and metal rich wastewater are evaluated in detail in this review.


Asunto(s)
Metales Pesados , Aguas Residuales , Reactores Biológicos , Sulfatos , Sulfuros
9.
Arch Biochem Biophys ; 676: 108128, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31622585

RESUMEN

Since mid-1970s, the proton-centric proposal of 'chemiosmosis' became the acclaimed explanation for aerobic respiration. Recently, significant theoretical and experimental evidence were presented for an oxygen-centric 'murburn' mechanism of mitochondrial ATP-synthesis. Herein, we compare the predictive capabilities of the two models with respect to the available information on mitochondrial reaction chemistry and the membrane proteins' structure-function correlations. Next, fundamental queries are addressed on thermodynamics of mitochondrial oxidative phosphorylation (mOxPhos): (1) Can the energy of oxygen reduction be utilized for proton transport? (2) Is the trans-membrane proton differential harness-able as a potential energy capable of doing useful work? and (3) Whether the movement of miniscule amounts of mitochondrial protons could give rise to a potential of ~200 mV and if such an electrical energy could sponsor ATP-synthesis. Further, we explore critically if rotary ATPsynthase activity of Complex V can account for physiological ATP-turnovers. We also answer the question- "What is the role of protons in the oxygen-centric murburn scheme of aerobic respiration?" Finally, it is demonstrated that the murburn reaction model explains the fast kinetics, non-integral stoichiometry and high yield of mOxPhos. Strategies are charted to further demarcate the two explanations' relevance in the cellular physiology of aerobic respiration.


Asunto(s)
Modelos Biológicos , Fuerza Protón-Motriz , Adenosina Trifosfato/metabolismo , Aerobiosis , Respiración de la Célula , Oxidación-Reducción
10.
J Environ Manage ; 240: 431-440, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30954665

RESUMEN

Marine sources especially crustaceans have been extensively used worldwide for the production of chitosan. However, limited availability as well as variations in the properties of the derived chitosan is a serious drawback of utilizing marine sources for chitosan production. This study investigated sustainable and green approach of fungal chitosan production using paper mill wastewater as a cheap and easily available substrate. The fungus Penicillium citrinum IITG_KP1 used in this study was initially isolated from an infected bamboo shoot. Addition of acetic acid at low levels led to a 150% increase in the yield of chitosan from 95 g/kg to 138 g/kg of dry fungal biomass. This result correlated well with an increase in xylose uptake rate due to acetic acid addition that was confirmed by enhanced activity of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes in the presence of acetic acid. Very high COD removal efficiency (75%) along with 70% phenolic reduction and 84% decolourization efficiency of the raw paper mill wastewater without any prior pre-treatment was further achieved by carrying out the fungal fermentation using a bioreactor under batch mode of operation. The fungal chitosan showed properties comparable with those of a commercially available standard.


Asunto(s)
Quitosano , Penicillium , Biomasa , D-Xilulosa Reductasa , Fermentación , Aguas Residuales
11.
J Environ Manage ; 250: 109385, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31521920

RESUMEN

In this study, bamboo carrier based lab scale compost biofilter was evaluated to treat synthetic waste air containing trichloroethylene (TCE) under continuous operation mode. The effect of inlet TCE concentration and gas flow rate and its removal was investigated. Maximum TCE removal efficiency was found to be 89% under optimum conditions of inlet 0.986 g/m3 TCE concentration corresponding to a loading rate of 43 g/m3 h and 0.042 m3/h gas flow rate at empty bed residence time (EBRT) of 2 min. For the first time, Artificial Neural Network (ANN) was applied to predict the performance of the compost biofilter in terms of TCE removal. The ANN model used a three layer feed forward based Levenberg-Marquardt algorithm, and its topology consisted of 3-25-1 as the optimum number for the three layers (input, hidden and output). An excellent match between the experimental and ANN predicted the value of TCE removal was obtained with a coefficient of determination (R2) value greater than 0.99 during the model training, validation, testing and overall. Furthermore, statistical analysis of the ANN model performance mediated its prediction accuracy of the bioreactor to treat TCE contaminated systems.


Asunto(s)
Tricloroetileno , Biodegradación Ambiental , Reactores Biológicos , Filtración , Gases , Redes Neurales de la Computación
12.
J Environ Manage ; 249: 109402, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450202

RESUMEN

In this study, a moving bed biofilm reactor was used for biodesulfuruization using CO as the sole carbon substrate. The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was examined. At 72, 48 and 24 h HRT, the sulfate removal was 93.5%, 91.9% and 80.1%, respectively. An increase in the sulfate loading reduced the sulfate reduction efficiency, which, however, was improved by increasing the CO flow rate into the MBBR. Best results in terms of sulfate reduction (>80%) were obtained for low inlet sulfate and high CO loading conditions. The CO utilization was very high at 85% throughout the study, except during the last phase of the continuous bioreactor operation it was around 70%. An artificial neural network based model was successfully developed and optimized to accurately predict the bioreactor performance in terms of both sulfate reduction and CO utilization. Overall, this study showed an excellent potential of the moving bed biofilm bioreactor for efficient sulfate reduction even under high loading conditions.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Biopelículas , Monóxido de Carbono , Sulfatos , Eliminación de Residuos Líquidos
13.
J Environ Manage ; 250: 109401, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472375

RESUMEN

This study evaluated a novel shortcut nitrogen removal method using a mixed consortium of microalgae, enriched ammonia oxidizing bacteria (AOB) and methanol utilizing denitrifier (MUD) in a photo-sequencing batch reactor (PSBR) for treating ammonium rich wastewater (ARWW). Alternating light and dark periods were followed to obtain complete biological nitrogen removal (BNR) without any external aeration and with the addition of methanol as the sole carbon source, respectively. The results showed that influent NH4+ was oxidized to NO2- by AOB during the light periods at a rate of 8.09 mg NH4+-N L-1h-1. Subsequently, NO2- was completely reduced during the dark period due to the action of MUD in presence of methanol. The high activities of ammonia monooxygenase (AMO) and nitrite reductase (NIR) enzymes revealed the strong role of AOB and MUD for achieving shortcut nitrogen removal from the wastewater. The reduced activities of nitrate reductase (NR) and nitrite oxidoreductase (NOR) at a high concentration of DO, NH4+ and NO2-in the system further confirmed the nitrogen removal pathway involved in the process. The biomass produced from these experiments showed good settling properties with a maximum sedimentation rate of 0.7-1.8 m h-1, a maximum sludge volume index (SVI) of 193 ml g-1- 256 ml g-1and floc size of 0.2-1.2 mm. In order to describe the growth and interaction among the algae, AOB and MUD for nitrogen removal in the system, the experimental results were fitted to four metabolic models, which revealed best fit of the experimental data due to the models based on algae-AOB and algae-AOB-MUD activities than with the other two models.


Asunto(s)
Desnitrificación , Nitrógeno , Amoníaco , Bacterias , Reactores Biológicos , Nitritos , Aguas del Alcantarillado
14.
J Environ Manage ; 218: 486-496, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29709817

RESUMEN

Heavy metal removal was evaluated using sodium alginate immobilized sulfate reducing bacteria (SRB) under batch and continuous mode. Under batch conditions, more than 95% metal removal was achieved due to formation of insoluble metal sulfides exterior to the bead surface. Best heavy metal removal results were obtained at 48 h hydraulic retention time (HRT). Metal loading rate values upto 2.20 mg/L∙h for Fe(III), Zn(II), Cd(II), Pb(II) and Ni(II) and upto 4.29 mg/L∙h for Cu(II) were proved to be favorable for their removal using the continuous downflow column reactor packed with the immobilized SRB beads. Continuous metal removal from a mixture of the heavy metals showed that Cu(II) removal was maximum (99%), followed by Zn(II) (95.8%) and other metals at their respective low inlet concentrations. However, the removal values were reduced at a high inlet concentration of these metals, which matched well with low COD and sulfate reduction values.


Asunto(s)
Alginatos/química , Desulfovibrio , Metales Pesados/aislamiento & purificación , Compuestos Férricos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Metales Pesados/química , Sulfatos
15.
J Environ Manage ; 206: 715-730, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29156430

RESUMEN

In the current industrial scenario, chromium (Cr) as a metal is of great importance, but poses a major threat to the environment. Phytoremediation provides an environmentally sustainable, ecofriendly, cost effective approach for environmental cleanup of Cr. This review presents the current status of phytoremediation research with particular emphasis on cleanup of Cr contaminated soil and water systems. It gives a detailed account of the work done by different authors on the Cr bioavailability, uptake pathway, toxicity and storage in plants following the phytoextraction mechanism. This paper also describes recent findings related to Cr localization in hyperaccumulator plants. It gives an insight into the processes and mechanisms that allow plants to remove Cr from contaminated sites under varying conditions. These detailed knowledge of changes in plant metabolic pool in response to Cr stress would immensely help understand and improve the phytoextraction process. Further, this review provides a detailed understanding of Cr uptake and detoxification mechanism by plants that can be applied in developing a suitable approach for a better applicability of the process.


Asunto(s)
Cromo , Plantas , Contaminantes del Suelo , Biodegradación Ambiental , Cromo/farmacocinética , Cromo/toxicidad , Suelo , Contaminantes del Suelo/farmacocinética , Contaminantes del Suelo/toxicidad
16.
J Environ Manage ; 219: 294-303, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29753237

RESUMEN

This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ±â€¯3.52%) and CO utilization (98 ±â€¯1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ±â€¯0.15%, 89.75 ±â€¯0.47% and 61.08 ±â€¯0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ±â€¯0.44, 59.16 ±â€¯1.08, 315.83 ±â€¯7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system.


Asunto(s)
Reactores Biológicos , Monóxido de Carbono , Sulfatos , Biomasa , Oxidación-Reducción , Eliminación de Residuos Líquidos
17.
Water Sci Technol ; 78(11): 2374-2382, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30699089

RESUMEN

Common porous concrete templates (CPCT) and advanced porous concrete templates (APCT) were employed in this study to construct wetlands for their applications in pollutant removal from storm runoff. The planting ability of the concrete was investigated by growing Festuca elata plants in them. Strength of the porous concrete (7.21 ± 0.19 Mpa) decreased by 1.8 and 4.9% over a period of six and 12 months, respectively, due to its immersion in lake water. The height and weight of Festuca elata grass growth on the porous concrete were observed to be 12.6-16.9 mm and 63.4-95.4 mg, respectively, after a duration of one month. Advanced porous concrete template based constructed wetland (APCT-CW) showed better removal of chemical oxygen demand (COD) (49.6%), total suspended solids (TSS) (58.9), NH3-N (52.4%), total nitrogen (TN) (47.7%) and total phosphorus (TP) (45.5%) in storm water, when compared with the common porous concrete template based constructed wetland (CPCT-CW) with 20.6, 29.8, 30.1, 35.4 and 26.9%, respectively. The removal of Pb, Ni, Zn by the CPCT-CW unit were 28.9, 33.3 and 42.3%, respectively, whereas these were 51.1, 62.5 and 53.8%, respectively, with the APCT-CW unit. These results demonstrate that the advanced porous concrete template in constructed wetland could be employed successfully for the removal of pollutants from urban storm water runoff.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Humedales , Análisis de la Demanda Biológica de Oxígeno , Materiales de Construcción , Nitrógeno , Fósforo , Movimientos del Agua , Contaminantes Químicos del Agua
18.
Int J Phytoremediation ; 19(11): 1007-1016, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28436682

RESUMEN

Discharge of wastewater from electroplating and leather industries is a major concern for the environment due to the presence of toxic Cr6+ and other ions, such as sulfate, nitrate, phosphate, etc. This study evaluated the potential of Tradescantia pallida, a plant species known for its Cr bioaccumulation, for the simultaneous removal of Cr6+, SO42-, NO3-, and PO43-. The effect of different co-ions on Cr6+ removal by T. pallida was examined following the Plackett-Burman design of experiments carried out under batch hydroponics conditions. The results revealed a maximum removal of 84% Cr6+, 87% SO42-, 94% NO3- and 100% PO43- without any phytotoxic effect on the plant for an initial Cr6+ concentration in the range 5-20 mg L-1. SO42- and NO3- enhanced Cr uptake at a high initial Cr concentration (20 mg L-1), whereas PO43- did not affect Cr uptake both at high and low initial Cr concentrations. The Cr6+ removal kinetics in the presence of different ions was well described by the pseudo-second-order kinetic model which revealed that both biosorption and bioaccumulation of the metal played an important role in Cr6+ removal. Increase in the total carbohydrate and protein content of the plant following Cr6+ and co-ions exposure indicated a good tolerance of the plant toward Cr6+ toxicity. Furthermore, enhancement in the lipid peroxidation and catalase activity in T. pallida upon Cr6+ exposure revealed a maximum stress-induced condition in the plant. Overall, this study demonstrated a very good potential of the plant T. pallida for Cr6+ removal from wastewater even in the presence of co-ions.


Asunto(s)
Biodegradación Ambiental , Cromo , Tradescantia , Aguas Residuales , Contaminantes Químicos del Agua , Cromo/metabolismo , Galvanoplastia , Iones , Cinética , Peroxidación de Lípido , Oxidación-Reducción , Tradescantia/metabolismo , Contaminantes Químicos del Agua/metabolismo
19.
Prep Biochem Biotechnol ; 47(1): 74-80, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27070115

RESUMEN

The effect of dissolved oxygen (DO) level and pH (controlled/uncontrolled) was first studied to enhance the production of novel glutaminase-free L-asparaginase by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. The optimum level of DO was found to be 20%. The production of L-asparaginase was found to be maximum when pH of the medium was maintained at 8.5 after 12 h of fermentation. Under these conditions, P. carotovorum produced 17.97 U/mL of L-asparaginase corresponding to the productivity of 1497.50 U/L/h. The production of L-asparaginase was studied in fed-batch bioreactor by feeding L-asparagine (essential substrate for production) and/or glucose (carbon source for growth) at the end of the reaction period of 12 h. The initial medium containing both L-asparagine and glucose in the batch mode and L-asparagine in the feeding stream was found to be the best combination for enhanced production of glutaminase-free L-asparaginase. Under this condition, the L-asparaginase production was increased to 38.8 U/mL, which corresponded to a productivity of 1615.8 U/L/h. The production and productivity were increased by 115.8% and 7.9%, respectively, both of which are higher than those obtained in the batch bioreactor experiments.


Asunto(s)
Asparaginasa/biosíntesis , Reactores Biológicos , Pectobacterium carotovorum/enzimología , Asparaginasa/metabolismo , Medios de Cultivo , Glutaminasa/metabolismo
20.
Environ Monit Assess ; 189(7): 314, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28589456

RESUMEN

Microbial biosorption has evolved as an effective strategy for heavy metal removal from contaminated waters. The common cyanobacterium Nostoc muscorum isolated from the banks of a polluted river in Meghalaya, India, was tested for its potential to remove Zn2+ from aqueous solutions. Energy-dispersive X-ray (EDX) study verified Zn binding on the cyanobacterial biomass, and FTIR analysis revealed many negatively charged functional groups (hydroxyl, carbonyl, alcohol, amine, phosphoryl, sulfhydryl, and carboxyl) on the cell surface that aided in metal binding. Thermodynamic studies established the biosorption process to be energetically favorable with negative free energy change (-10.404, -10.599, and -10.796 kJ/mol at 298, 303, and 308 K, respectively). Sorption isotherm data fitted best in the Langmuir isotherm indicating monolayer nature of Zn sorption. The organism showed hyper-accumulation tendency towards Zn with a maximum sorption capacity as high as 2500 mg of Zn taken up per gram of biomass. The separation factor R L calculated from Langmuir isotherm ranged between 0 and 1 signifying favorable interaction between the cyanobacterial biomass and the Zn ions. Various experimental parameters, viz. pH, temperature, inoculum age and size, and shaking rate, influenced Zn biosorption. Optimized experimental conditions significantly enhanced the sorption percentage. Sorption was primarily a fast surface phenomenon in the beginning with internalization of zinc ions by the live cells on prolonged exposure.


Asunto(s)
Monitoreo del Ambiente , Nostoc muscorum/metabolismo , Contaminantes Químicos del Agua/metabolismo , Zinc/metabolismo , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , India , Cinética , Termodinámica , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA