Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 89(1): 799-810, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355877

RESUMEN

UNLABELLED: Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE: This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.


Asunto(s)
Apoptosis , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Monocitos/inmunología , Carga Viral , Adulto , Anciano de 80 o más Años , Enfermedad Crónica , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Monocitos/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteína de Retinoblastoma/biosíntesis , Adulto Joven
2.
Nucleic Acids Res ; 42(8): e64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24503249

RESUMEN

Molecular stratification of tumors is essential for developing personalized therapies. Although patient stratification strategies have been successful; computational methods to accurately translate the gene-signature from high-throughput platform to a clinically adaptable low-dimensional platform are currently lacking. Here, we describe PIGExClass (platform-independent isoform-level gene-expression based classification-system), a novel computational approach to derive and then transfer gene-signatures from one analytical platform to another. We applied PIGExClass to design a reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) based molecular-subtyping assay for glioblastoma multiforme (GBM), the most aggressive primary brain tumors. Unsupervised clustering of TCGA (the Cancer Genome Altas Consortium) GBM samples, based on isoform-level gene-expression profiles, recaptured the four known molecular subgroups but switched the subtype for 19% of the samples, resulting in significant (P = 0.0103) survival differences among the refined subgroups. PIGExClass derived four-class classifier, which requires only 121 transcript-variants, assigns GBM patients' molecular subtype with 92% accuracy. This classifier was translated to an RT-qPCR assay and validated in an independent cohort of 206 GBM samples. Our results demonstrate the efficacy of PIGExClass in the design of clinically adaptable molecular subtyping assay and have implications for developing robust diagnostic assays for cancer patient stratification.


Asunto(s)
Neoplasias Encefálicas/clasificación , Perfilación de la Expresión Génica/métodos , Glioblastoma/clasificación , Isoformas de Proteínas/genética , Adulto , Anciano , Algoritmos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Femenino , Glioblastoma/genética , Glioblastoma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Environ Monit Assess ; 188(1): 14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26638156

RESUMEN

Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.


Asunto(s)
Agricultura/métodos , Carbono/análisis , Monitoreo del Ambiente , Suelo/química , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Ambiente , Fertilizantes/análisis , India , Triticum , Zea mays
4.
Genome Res ; 21(8): 1260-72, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21712398

RESUMEN

Despite our growing knowledge that many mammalian genes generate multiple transcript variants that may encode functionally distinct protein isoforms, the transcriptomes of various tissues and their developmental stages are poorly defined. Identifying the transcriptome and its regulation in a cell/tissue is the key to deciphering the cell/tissue-specific functions of a gene. We built a genome-wide inventory of noncoding and protein-coding transcripts (transcriptomes), their promoters (promoteromes) and histone modification states (epigenomes) for developing, and adult cerebella using integrative massive-parallel sequencing and bioinformatics approach. The data consists of 61,525 (12,796 novel) distinct mRNAs transcribed by 29,589 (4792 novel) promoters corresponding to 15,669 protein-coding and 7624 noncoding genes. Importantly, our results show that the transcript variants from a gene are predominantly generated using alternative transcriptional rather than splicing mechanisms, highlighting alternative promoters and transcriptional terminations as major sources of transcriptome diversity. Moreover, H3K4me3, and not H3K27me3, defined the use of alternative promoters, and we identified a combinatorial role of H3K4me3 and H3K27me3 in regulating the expression of transcripts, including transcript variants of a gene during development. We observed a strong bias of both H3K4me3 and H3K27me3 for CpG-rich promoters and an exponential relationship between their enrichment and corresponding transcript expression. Furthermore, the majority of genes associated with neurological diseases expressed multiple transcripts through alternative promoters, and we demonstrated aberrant use of alternative promoters in medulloblastoma, cancer arising in the cerebellum. The transcriptomes of developing and adult cerebella presented in this study emphasize the importance of analyzing gene regulation and function at the isoform level.


Asunto(s)
Empalme Alternativo , Cerebelo/crecimiento & desarrollo , Transcripción Genética , Transcriptoma , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Cerebelo/metabolismo , Biología Computacional , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Endogámicos , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo
5.
Nat Genet ; 37(3): 254-64, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15696166

RESUMEN

Transcriptional repression of methylated genes can be mediated by the methyl-CpG binding protein MeCP2. Here we show that human Brahma (Brm), a catalytic component of the SWI/SNF-related chromatin-remodeling complex, associates with MeCP2 in vivo and is functionally linked with repression. We used a number of different molecular approaches and chromatin immunoprecipitation strategies to show a unique cooperation between Brm, BAF57 and MeCP2. We show that Brm and MeCP2 assembly on chromatin occurs on methylated genes in cancer and the gene FMR1 in fragile X syndrome. These experimental findings identify a new role for SWI/SNF in gene repression by MeCP2.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Silenciador del Gen/fisiología , Proteínas Represoras/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Histonas/fisiología , Humanos , Proteína 2 de Unión a Metil-CpG , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética
6.
Nucleic Acids Res ; 39(1): 190-201, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20843783

RESUMEN

Alternative promoters that are differentially used in various cellular contexts and tissue types add to the transcriptional complexity in mammalian genome. Identification of alternative promoters and the annotation of their activity in different tissues is one of the major challenges in understanding the transcriptional regulation of the mammalian genes and their isoforms. To determine the use of alternative promoters in different tissues, we performed ChIP-seq experiments using antibody against RNA Pol-II, in five adult mouse tissues (brain, liver, lung, spleen and kidney). Our analysis identified 38 639 Pol-II promoters, including 12 270 novel promoters, for both protein coding and non-coding mouse genes. Of these, 6384 promoters are tissue specific which are CpG poor and we find that only 34% of the novel promoters are located in CpG-rich regions, suggesting that novel promoters are mostly tissue specific. By identifying the Pol-II bound promoter(s) of each annotated gene in a given tissue, we found that 37% of the protein coding genes use alternative promoters in the five mouse tissues. The promoter annotations and ChIP-seq data presented here will aid ongoing efforts of characterizing gene regulatory regions in mammalian genomes.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Animales , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Genoma , Ratones , Análisis de Secuencia de ADN/normas , Transcripción Genética
7.
Int J Radiat Oncol Biol Phys ; 115(5): 1115-1128, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526235

RESUMEN

PURPOSE: 131I-metaiodobenzylguanidine (131I-MIBG) has demonstrated efficacy as a single agent in neuroblastoma. Recent trials have focused on 131I-MIBG combination strategies, though little is known about the effect of putative radiosensitizers on biological markers of radiation exposure. METHODS AND MATERIALS: NANT2011-01 evaluated 131I-MIBG therapy alone (arm A) or in combination with vincristine/irinotecan (arm B) or vorinostat (arm C) for patients with relapsed or refractory neuroblastoma. Blood samples were collected before and after 131I-MIBG infusion to determine levels of radiation-associated biomarkers (transcript and protein). The association of biomarker with treatment arm, clinical response, and treatment toxicity was analyzed. RESULTS: The cohort included 99 patients who had at least 1 biomarker available for analysis. Significant modulation in most biomarkers between baseline, 72, and 96 hours following 131I-MIBG was observed. Patients in arm C had the lowest degree of modulation in FLT3 ligand protein. Lower baseline BCL2 transcript levels were associated with higher overall response. Patients with greater increases in FLT3 ligand at 96 hours after 131I-MIBG therapy were significantly more likely to have grade 4 thrombocytopenia. Peripheral blood gene expression of the BCL2 family of apoptotic markers (BCL2L1 and BAX transcripts) was significantly associated with grade 4 hematologic toxicity. RNA sequencing demonstrated little overlap in the top modulated peripheral blood transcripts between randomized arms. CONCLUSIONS: Peripheral blood biomarkers relevant to radiation exposure demonstrate significant modulation after 131I-MIBG and concomitant radiation sensitizers affect extent of modulation. Biomarkers related to hematopoietic damage and apoptosis were associated with hematologic toxicity.


Asunto(s)
Neuroblastoma , Fármacos Sensibilizantes a Radiaciones , Humanos , 3-Yodobencilguanidina/efectos adversos , Fármacos Sensibilizantes a Radiaciones/efectos adversos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/radioterapia , Biomarcadores , Proteínas Proto-Oncogénicas c-bcl-2
8.
ACS Omega ; 7(30): 25909-25920, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936412

RESUMEN

Driven by the possibility of precise transformational change in nutrient-enrichment technology to meet global food demand, advanced nutrient delivery strategies have emerged to pave the path toward success for nutrient enrichment in edible parts of crops through bioderived nanocarriers with increased productivity. Slow and controlled release of nutrient carrier materials influences the nutrient delivery rate in soil and in the edible parts of crops with a sluggish nutrient delivery to enhance their availability in roots by minimizing nutrient loss. With a limited understanding of the nutrient delivery mechanism in soil and the edible parts of crops, it is envisaged to introduce nutrient-enrichment technology for nutrient delivery that minimizes environmental impact due to its biodegradable nature. This article attempts to analyze the possible role of the cellulose matrix for nutrient release and the role of cellulose nanocomposites and nanofibers. We have proposed a few cellulose derived biofortificant materials as nutrient carriers, such as (1) nanofibers, (2) polymer-nanocellulose-clay composites, (3) silk-fibroin derived nanocarriers, and (4) carboxymethyl cellulose. An effort is undertaken to describe the research need by linking a biopolymer derived nanocarrier for crop growth regulation and experimental nitrogen release analysis. We have finally provided a perspective on cellulose nanofibers (CNFs) for microcage based nutrient loading ability. This article aims to explain why biopolymer derived nutrient carriers are the alternative candidate for alleviating nutrient deficiency challenges which are involved in focusing the nutrient delivery profile of biopolymers and promising biofortification of crops.

9.
Neurooncol Adv ; 4(1): vdac073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733515

RESUMEN

Background: Children with diffuse intrinsic pontine gliomas (DIPG) have a dismal prognosis. Adavosertib (AZD1775) is an orally available, blood-brain barrier penetrant, Wee1 kinase inhibitor. Preclinical efficacy against DIPG is heightened by radiation induced replication stress. Methods: Using a rolling six design, 7 adavosertib dose levels (DLs) (50 mg/m2 alternating weeks, 50 mg/m2 alternating with weeks of every other day, 50 mg/m2, then 95, 130, 160, 200 mg/m2) were assessed. Adavosertib was only given on days of cranial radiation therapy (CRT).The duration of CRT (54 Gy over 30 fractions; 6 weeks) constituted the dose limiting toxicity (DLT) period. Endpoints included tolerability, pharmacokinetics, overall survival (OS) and peripheral blood γH2AX levels as a marker of DNA damage. Results: A total of 46 eligible patients with newly diagnosed DIPG [median (range) age 6 (3-21) years; 52% female] were enrolled. The recommend phase 2 dose (RP2D) of adavosertib was 200 mg/m2/d during days of CRT. Dose limiting toxicity included ALT elevation (n = 1, DL4) and neutropenia (n = 1, DL7). The mean Tmax, T1/2 and Clp on Day 1 were 2 h, 4.4 h, and 45.2 L/hr/m2, respectively. Modest accumulation of adavosertib was observed comparing day 5 versus day 1 AUC0-8h (accumulation ratio = 1.6). OS was 11.1 months (95% CI: 9.4, 12.5) and did not differ from historical control. Conclusion: Adavosertib in combination with CRT is well tolerated in children with newly diagnosed DIPG, however, compared to historical controls, did not improve OS. These results can inform future trial design in children with high-risk cancer.

10.
Cancer Cell ; 40(9): 957-972.e10, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985342

RESUMEN

Diffuse midline glioma (DMG) is a uniformly fatal pediatric cancer driven by oncohistones that do not readily lend themselves to drug development. To identify druggable targets for DMG, we conducted a genome-wide CRISPR screen that reveals a DMG selective dependency on the de novo pathway for pyrimidine biosynthesis. This metabolic vulnerability reflects an elevated rate of uridine/uracil degradation that depletes DMG cells of substrates for the alternate salvage pyrimidine biosynthesis pathway. A clinical stage inhibitor of DHODH (rate-limiting enzyme in the de novo pathway) diminishes uridine-5'-phosphate (UMP) pools, generates DNA damage, and induces apoptosis through suppression of replication forks-an "on-target" effect, as shown by uridine rescue. Matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy imaging demonstrates that this DHODH inhibitor (BAY2402234) accumulates in the brain at therapeutically relevant concentrations, suppresses de novo pyrimidine biosynthesis in vivo, and prolongs survival of mice bearing intracranial DMG xenografts, highlighting BAY2402234 as a promising therapy against DMGs.


Asunto(s)
Glioma , Pirimidinas , Animales , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Ratones , Uridina/metabolismo , Uridina/farmacología
11.
BMC Bioinformatics ; 12: 305, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21794104

RESUMEN

BACKGROUND: mRNA-Seq technology has revolutionized the field of transcriptomics for identification and quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons. RESULTS: We propose a novel algorithm (IsoformEx) that employs weighted non-negative least squares estimation method to estimate the expression levels of transcript isoforms. Validations based on in silico simulation of mRNA-Seq and qRT-PCR experiments with real mRNA-Seq data showed that IsoformEx could accurately estimate transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and higher agreement with qRT-PCR measurements of specific transcripts for real mRNA-Seq data. CONCLUSIONS: IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene expression levels, which takes into account short exons and alternative exons with a weighting scheme. The software is available at http://bioinformatics.wistar.upenn.edu/isoformex.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Línea Celular Tumoral , Exones , Humanos , Análisis de los Mínimos Cuadrados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos
13.
Front Oncol ; 11: 672339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367959

RESUMEN

Cancer cells rewire their metabolism to promote cell proliferation, invasion, and metastasis. Alterations in the lactate pathway have been characterized in diverse cancers, correlate with outcomes, and lead to many downstream effects, including decreasing oxidative stress, promoting an immunosuppressive tumor microenvironment, lipid synthesis, and building chemo- or radio-resistance. Radiotherapy is a key modality of treatment for many cancers and approximately 50% of patients with cancer will receive radiation for cure or palliation; thus, overcoming radio-resistance is important for improving outcomes. Growing research suggests that important molecular controls of the lactate pathway may serve as novel therapeutic targets and in particular, radiosensitizers. In this mini-review, we will provide an overview of lactate metabolism in cancer, discuss three important contributors to lactate metabolism (lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier), and present data that inhibition of these three pathways can lead to radiosensitization. Future research is needed to further understand critical regulators of lactate metabolism and explore clinical safety and efficacy of inhibitors of lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier alone and in combination with radiation.

14.
ACS Omega ; 6(37): 23654-23665, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34568645

RESUMEN

A similarity of metal alloy encapsulation with the micronutrient loading in carbon nanoarchitecture can be fueled by exploring carbon nanocarriers to load micronutrient and controlled delivery for crop biofortification. A wood-derived nanoarchitecture model contains a few-graphene-layer that holds infiltrated alloy nanoparticles. Such wood-driven carbonized framework materials with legions of open porous architectures and minimized-tortuosity units further decorated carbon nanotubes (CNTs), which originate from heat treatment to carbonized wood samples. These wood-derived samples can alleviate micronutrient nanoparticle permeation and delivery to the soil. A rapid heat shock treatment can help in distributing N-C-NiFe metal alloy encapsulation in carbon frameworks uniformly in that case; higher heating and rapid extinction of heat shock have led to formation of good dispersion of nanoparticles. The wood-carbon framework decorated with metal alloys displays promising electrocatalytic features and cyclic stability for hydrogen evolution. Envisaged from this strategy, we obtain enough evidence to form an opinion that a singular heat shock process can even lead to a strategy of faster growth of a wood-carbon network with well-dispersed micronutrient metal salts in porous matrices for high-efficiency delivery to the soil. Having envisaged the formation of ultrafine nanoparticles with a good dispersion profile in the case of transition metals and alloy encapsulation in the carbon network due to the rapid heating and quenching rates, we anticipate that the loading of micronutrients in the wood-derived nanoarchitecture of carbonized wood derived carbon nanotube (CW-CNT), which can offer an application in seed germination and enhance growth rates of crops. The experience of controlled experiments on germination of tomato seeds on a medium containing CW-CNT that can diffuse the seed coat with the promotion of water uptake inside seeds for enhanced germination and growth of tomato seedlings can be further extended to cereal crops.

15.
Mol Cell Biol ; 41(7): e0052620, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33903225

RESUMEN

How mammalian neuronal identity is progressively acquired and reinforced during development is not understood. We have previously shown that loss of RP58 (ZNF238 or ZBTB18), a BTB/POZ-zinc finger-containing transcription factor, in the mouse brain leads to microcephaly, corpus callosum agenesis, and cerebellum hypoplasia and that it is required for normal neuronal differentiation. The transcriptional programs regulated by RP58 during this process are not known. Here, we report for the first time that in embryonic mouse neocortical neurons a complex set of genes normally expressed in other cell types, such as those from mesoderm derivatives, must be actively repressed in vivo and that RP58 is a critical regulator of these repressed transcriptional programs. Importantly, gene set enrichment analysis (GSEA) analyses of these transcriptional programs indicate that repressed genes include distinct sets of genes significantly associated with glioma progression and/or pluripotency. We also demonstrate that reintroducing RP58 in glioma stem cells leads not only to aspects of neuronal differentiation but also to loss of stem cell characteristics, including loss of stem cell markers and decrease in stem cell self-renewal capacities. Thus, RP58 acts as an in vivo master guardian of the neuronal identity transcriptome, and its function may be required to prevent brain disease development, including glioma progression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Glioblastoma/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Ratones , Neurogénesis/fisiología , Neuroglía/metabolismo , Proteínas Represoras/genética
16.
Mol Cancer Ther ; 20(4): 726-738, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33536189

RESUMEN

The oncogenic transcription factor STAT3 is aberrantly activated in 70% of breast cancers, including nearly all triple-negative breast cancers (TNBCs). Because STAT3 is difficult to target directly, we considered whether metabolic changes driven by activated STAT3 could provide a therapeutic opportunity. We found that STAT3 prominently modulated several lipid classes, with most profound effects on N-acyl taurine and arachidonic acid, both of which are involved in plasma membrane remodeling. To exploit these metabolic changes therapeutically, we screened a library of layer-by-layer (LbL) nanoparticles (NPs) differing in the surface layer that modulates interactivity with the cell membrane. We found that poly-l-glutamic acid (PLE)-coated NPs bind to STAT3-transformed breast cancer cells with 50% greater efficiency than to nontransformed cells, and the heightened PLE-NP binding to TNBC cells was attenuated by STAT3 inhibition. This effect was also observed in densely packed three-dimensional breast cancer organoids. As STAT3-transformed cells show greater resistance to cytotoxic agents, we evaluated whether enhanced targeted delivery via PLE-NPs would provide a therapeutic advantage. We found that cisplatin-loaded PLE-NPs induced apoptosis of STAT3-driven cells at lower doses compared with both unencapsulated cisplatin and cisplatin-loaded nontargeted NPs. In addition, because radiation is commonly used in breast cancer treatment, and may alter cellular lipid distribution, we analyzed its effect on PLE-NP-cell binding. Irradiation of cells enhanced the STAT3-targeting properties of PLE-NPs in a dose-dependent manner, suggesting potential synergies between these therapeutic modalities. These findings suggest that cellular lipid changes driven by activated STAT3 may be exploited therapeutically using unique LbL NPs.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Ácido Glutámico/uso terapéutico , Lipidómica/métodos , Nanopartículas/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Ácido Glutámico/farmacología , Humanos , Neoplasias de la Mama Triple Negativas/patología
17.
BMC Bioinformatics ; 11 Suppl 1: S65, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20122241

RESUMEN

BACKGROUND: Use of alternative gene promoters that drive widespread cell-type, tissue-type or developmental gene regulation in mammalian genomes is a common phenomenon. Chromatin immunoprecipitation methods coupled with DNA microarray (ChIP-chip) or massive parallel sequencing (ChIP-seq) are enabling genome-wide identification of active promoters in different cellular conditions using antibodies against Pol-II. However, these methods produce enrichment not only near the gene promoters but also inside the genes and other genomic regions due to the non-specificity of the antibodies used in ChIP. Further, the use of these methods is limited by their high cost and strong dependence on cellular type and context. METHODS: We trained and tested different state-of-art ensemble and meta classification methods for identification of Pol-II enriched promoter and Pol-II enriched non-promoter sequences, each of length 500 bp. The classification models were trained and tested on a bench-mark dataset, using a set of 39 different feature variables that are based on chromatin modification signatures and various DNA sequence features. The best performing model was applied on seven published ChIP-seq Pol-II datasets to provide genome wide annotation of mouse gene promoters. RESULTS: We present a novel algorithm based on supervised learning methods to discriminate promoter associated Pol-II enrichment from enrichment elsewhere in the genome in ChIP-chip/seq profiles. We accumulated a dataset of 11,773 promoter and 46,167 non-promoter sequences, each of length 500 bp, generated from RNA Pol-II ChIP-seq data of five tissues (Brain, Kidney, Liver, Lung and Spleen). We evaluated the classification models in building the best predictor and found that Bagging and Random Forest based approaches give the best accuracy. We implemented the algorithm on seven different published ChIP-seq datasets to provide a comprehensive set of promoter annotations for both protein-coding and non-coding genes in the mouse genome. The resulting annotations contain 13,413 (4,747) protein-coding (non-coding) genes with single promoters and 9,929 (1,858) protein-coding (non-coding) genes with two or more alternative promoters, and a significant number of unassigned novel promoters. CONCLUSION: Our new algorithm can successfully predict the promoters from the genome wide profile of Pol-II bound regions. In addition, our algorithm performs significantly better than existing promoter prediction methods and can be applied for genome-wide predictions of Pol-II promoters.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , ADN Polimerasa II/metabolismo , Minería de Datos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Algoritmos , Genómica , Regiones Promotoras Genéticas
18.
Mol Cell Biol ; 27(1): 384-94, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17043109

RESUMEN

Skeletal muscle differentiation requires the coordinated activity of transcription factors, histone modifying enzymes, and ATP-dependent chromatin remodeling enzymes. The type II protein arginine methyltransferase Prmt5 symmetrically dimethylates histones H3 and H4 and numerous nonchromatin proteins, and prior work has implicated Prmt5 in transcriptional repression. Here we demonstrate that MyoD-induced muscle differentiation requires Prmt5. One of the first genes activated during differentiation encodes the myogenic regulator myogenin. Prmt5 and dimethylated H3R8 (histone 3 arginine 8) are localized at the myogenin promoter in differentiating cells. Modification of H3R8 required Prmt5, and reduction of Prmt5 resulted in the abrogation of promoter binding by the Brg1 ATPase-associated with the SWI/SNF chromatin remodeling enzymes and all subsequent events associated with gene activation, including increases in chromatin accessibility and stable binding by MyoD. Prmt5 and dimethylated H3R8 were also associated with the myogenin promoter in activated satellite cells isolated from muscle tissue, further demonstrating the physiological relevance of these observations. The data indicate that Prmt5 facilitates myogenesis because it is required for Brg1-dependent chromatin remodeling and gene activation at a locus essential for differentiation. We therefore conclude that a histone modifying enzyme is necessary to permit an ATP-dependent chromatin remodeling enzyme to function.


Asunto(s)
Adenosina Trifosfato/química , Cromatina/química , Músculos/metabolismo , Proteína Metiltransferasas/fisiología , Animales , Diferenciación Celular , Separación Celular , Cromatina/metabolismo , ADN Helicasas/metabolismo , Metilación de ADN , Enzimas de Restricción del ADN/metabolismo , Citometría de Flujo , Ratones , Músculo Esquelético/metabolismo , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Unión Proteica , Proteína Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
19.
Clin Cancer Res ; 26(6): 1213-1219, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31857431

RESUMEN

PURPOSE: Adavosertib (AZD1775), an inhibitor of WEE1 kinase, potentiates replicative stress induced by oncogenes or chemotherapy. Antitumor activity of adavosertib has been demonstrated in preclinical models of pediatric cancer. This phase I trial was performed to define dose-limiting toxicities (DLT), recommended phase II dose (RP2D), and pharmacokinetics of adavosertib in combination with irinotecan in children and adolescents with relapsed or refractory solid tumors or primary central nervous system tumors. PATIENTS AND METHODS: Using a 3+3 escalation design, five dose cohorts of the combination of adavosertib and irinotecan (50/70; 65/70; 65/90; 85/90; 110/90 mg/m2/day) delivered on days 1-5 of a 21-day cycle were studied. Pharmacokinetics and analysis of peripheral blood γH2AX was performed. RESULTS: Thirty-seven patients were enrolled; 27 were evaluable. The median (range) age was 14 (2-20) years. Twenty-five (93%) received prior chemotherapy (median, three regimens) and 21 (78%) received prior radiotherapy. Eleven patients had a primary central nervous system (CNS) malignancy. Common toxicities were hematologic and gastrointestinal. Two patients receiving adavosertib (110 mg/m2) in combination with irinotecan (90 mg/m2) experienced dose-limiting grade 3 dehydration. A patient with Ewing sarcoma had a confirmed partial response and 2 patients (ependymoma and neuroblastoma) had prolonged stable disease (≥ 6 cycles). Pharmacokinetics of adavosertib were variable but generally dose proportional and clearance was lower in younger patients. CONCLUSIONS: Adavosertib (85 mg/m2) in combination with irinotecan (90 mg/m2) administered orally for 5 days was the MTD in children and adolescents with solid and CNS tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Femenino , Humanos , Irinotecán/administración & dosificación , Masculino , Dosis Máxima Tolerada , Neoplasias/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Seguridad del Paciente , Pirazoles/administración & dosificación , Pirimidinonas/administración & dosificación , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/patología , Distribución Tisular , Resultado del Tratamiento , Adulto Joven
20.
Acta Neuropathol Commun ; 7(1): 203, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31815646

RESUMEN

Recent work has highlighted the tumor microenvironment as a central player in cancer. In particular, interactions between tumor and immune cells may help drive the development of brain tumors such as glioblastoma multiforme (GBM). Despite significant research into the molecular classification of glioblastoma, few studies have characterized in a comprehensive manner the immune infiltrate in situ and within different GBM subtypes.In this study, we use an unbiased, automated immunohistochemistry-based approach to determine the immune phenotype of the four GBM subtypes (classical, mesenchymal, neural and proneural) in a cohort of 98 patients. Tissue Micro Arrays (TMA) were stained for CD20 (B lymphocytes), CD5, CD3, CD4, CD8 (T lymphocytes), CD68 (microglia), and CD163 (bone marrow derived macrophages) antibodies. Using automated image analysis, the percentage of each immune population was calculated with respect to the total tumor cells. Mesenchymal GBMs displayed the highest percentage of microglia, macrophage, and lymphocyte infiltration. CD68+ and CD163+ cells were the most abundant cell populations in all four GBM subtypes, and a higher percentage of CD163+ cells was associated with a worse prognosis. We also compared our results to the relative composition of immune cell type infiltration (using RNA-seq data) across TCGA GBM tumors and validated our results obtained with immunohistochemistry with an external cohort and a different method. The results of this study offer a comprehensive analysis of the distribution and the infiltration of the immune components across the four commonly described GBM subgroups, setting the basis for a more detailed patient classification and new insights that may be used to better apply or design immunotherapies for GBM.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Inmunidad Celular/inmunología , Microambiente Tumoral/inmunología , Antígenos CD20/análisis , Antígenos CD20/inmunología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA