Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Res ; 52(1): 22, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588935

RESUMEN

COVID-19 is a zoonotic disease caused by SARS-CoV-2. Infections of animals with SARS-CoV-2 have recently been reported, and an increase of severe lung pathologies in domestic dogs has also been detected by veterinarians in Spain. Therefore, further descriptions of the pathological processes in those animals that show symptoms similar to those described in humans affected by COVID-19 would be highly valuable. The potential for companion animals to contribute to the continued transmission and community spread of this known human-to-human disease is an urgent issue to be considered. Forty animals with pulmonary pathologies were studied by chest X-ray, ultrasound analysis, and computed tomography. Nasopharyngeal and rectal swabs were analyzed to detect canine pathogens, including SARS-CoV-2. An additional twenty healthy dogs living in SARS-CoV-2-positive households were included. Immunoglobulin detection by several immunoassays was performed. Our findings show that sick dogs presented severe alveolar or interstitial patterns with pulmonary opacity, parenchymal abnormalities, and bilateral lesions. The forty sick dogs were negative for SARS-CoV-2 but Mycoplasma spp. was detected in 26 of 33 dogs. Five healthy and one pathological dog presented IgG against SARS-CoV-2. Here we report that despite detecting dogs with α-SARS-CoV-2 IgG, we never obtained a positive RT-qPCR for SARS-SoV-2, not even in dogs with severe pulmonary disease; suggesting that even in the case of canine infection, transmission would be unlikely. Moreover, dogs living in COVID-19-positive households could have been more highly exposed to infection with SARS-CoV-2.


Asunto(s)
COVID-19/veterinaria , Enfermedades de los Perros/transmisión , Inmunoglobulinas/sangre , Zoonosis/transmisión , Animales , COVID-19/transmisión , COVID-19/virología , Enfermedades de los Perros/virología , Perros , Femenino , Inmunidad Humoral , Masculino , España , Zoonosis/virología
2.
Vet Sci ; 9(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35878344

RESUMEN

The use of oncolytic viruses is an innovative approach to lyse tumor cells and induce antitumor immune responses. Eight dogs diagnosed with carcinoma/adenocarcinoma were intratumorally treated with ICOCAV15, an oncolytic canine adenovirus (CAV). To evaluate the treatment's safety, a blood count, biochemistry, and coagulation test were performed before treatment and during follow-up. Immune populations were analyzed by flow cytometry. Anti-adenovirus antibodies were also determined. The immune infiltration, vascularization, and viral presence in the tumor were determined by CD3, CD4, CD20, CD31 and CAV by immunohistochemistry. All the dogs maintained a good quality of life during follow-up, and some had increased median survival time when compared with dogs treated with chemotherapy. No treatment-related adverse effects were detected. The Response Evaluation Criteria In Solid Tumors criteria were also assessed: two patients showed a partial response and the rest showed stable disease at various times during the study. ICOCAV15 was detected inside the tumor during follow-up, and antiviral antibodies were detected in all patients. Furthermore, the tumor-infiltrating immune cells increased after viral administration. Therefore, we suggest that intratumorally administered ICOCAV15 could represent as a new tool for the treatment of canine carcinoma because it is safe, well-tolerated by dogs, and shows promising results.

3.
J Perinatol ; 39(5): 730-736, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30770883

RESUMEN

The use of volume guarantee (VG) on high-frequency oscillatory ventilation (HFOV) allows to use fixed very low high-frequency tidal volume (VThf), maintaining adequate CO2 removal while potentially reducing the risk of ventilator-induced lung injury. OBJECTIVE: To demonstrate that the use of very low VThf can be protective compared with standard VThf on HFOV combined with VG in a neonatal animal model. STUDY DESIGN: Experimental study in 2-day-old piglets with induced respiratory distress syndrome ventilated with two different HFOV strategies combined with VG (10 Hz with high VThf versus 20 Hz with very low VThf at similar PaCO2). After 12 h of mechanical ventilation, the pulmonary histologic pattern was analyzed. RESULTS: We found in the 10 Hz group with the higher VThf compared with the 20 Hz and very low VThf group more evident and more severe histological lesions with inflammatory infiltrate within the alveolar wall and alveolar space, as well as large areas of parenchyma consolidation and areas of alveolar hemorrhage in the more severe cases. CONCLUSION: The use of very low VThf compared with higher VThf at similar CO2 removal reduces lung injury in a neonatal animal model of lung injury after prolonged mechanical ventilation with HFOV combined with VG.


Asunto(s)
Ventilación de Alta Frecuencia/efectos adversos , Ventilación de Alta Frecuencia/métodos , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Volumen de Ventilación Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA