Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Opt Express ; 32(6): 9019-9041, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571146

RESUMEN

Many of the recent successes of deep learning-based approaches have been enabled by a framework of flexible, composable computational blocks with their parameters adjusted through an automatic differentiation mechanism to implement various data processing tasks. In this work, we explore how the same philosophy can be applied to existing "classical" (i.e., non-learning) algorithms, focusing on computed tomography (CT) as application field. We apply four key design principles of this approach for CT workflow design: end-to-end optimization, explicit quality criteria, declarative algorithm construction by building the forward model, and use of existing classical algorithms as computational blocks. Through four case studies, we demonstrate that auto-differentiation is remarkably effective beyond the boundaries of neural-network training, extending to CT workflows containing varied combinations of classical and machine learning algorithms.

2.
Opt Express ; 29(24): 40494-40513, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809388

RESUMEN

Tomography is a powerful tool for reconstructing the interior of an object from a series of projection images. Typically, the source and detector traverse a standard path (e.g., circular, helical). Recently, various techniques have emerged that use more complex acquisition geometries. Current software packages require significant handwork, or lack the flexibility to handle such geometries. Therefore, software is needed that can concisely represent, visualize, and compute reconstructions of complex acquisition geometries. We present tomosipo, a Python package that provides these capabilities in a concise and intuitive way. Case studies demonstrate the power and flexibility of tomosipo.

3.
J Synchrotron Radiat ; 23(Pt 3): 842-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140167

RESUMEN

The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy's standard reconstruction method.

4.
Opt Express ; 24(22): 25129-25147, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828452

RESUMEN

Object reconstruction from a series of projection images, such as in computed tomography (CT), is a popular tool in many different application fields. Existing commercial software typically provides sufficiently accurate and convenient-to-use reconstruction tools to the end-user. However, in applications where a non-standard acquisition protocol is used, or where advanced reconstruction methods are required, the standard software tools often are incapable of computing accurate reconstruction images. This article introduces the ASTRA Toolbox. Aimed at researchers across multiple tomographic application fields, the ASTRA Toolbox provides a highly efficient and highly flexible open source set of tools for tomographic projection and reconstruction. The main features of the ASTRA Toolbox are discussed and several use cases are presented.

5.
Nat Commun ; 15(1): 3939, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744870

RESUMEN

Visualizing the internal structure of museum objects is a crucial step in acquiring knowledge about the origin, state, and composition of cultural heritage artifacts. Among the most powerful techniques for exposing the interior of museum objects is computed tomography (CT), a technique that computationally forms a 3D image using hundreds of radiographs acquired in a full circular range. However, the lack of affordable and versatile CT equipment in museums, combined with the challenge of transporting precious collection objects, currently keeps this technique out of reach for most cultural heritage applications. We propose an approach for creating accurate CT reconstructions using only standard 2D radiography equipment already available in most larger museums. Specifically, we demonstrate that a combination of basic X-ray imaging equipment, a tailored marker-based image acquisition protocol, and sophisticated data-processing algorithms, can achieve 3D imaging of collection objects without the need for a costly CT imaging system. We implemented this approach in the British Museum (London), the J. Paul Getty Museum (Los Angeles), and the Rijksmuseum (Amsterdam). Our work paves the way for broad facilitation and adoption of CT technology across museums worldwide.

6.
Sci Rep ; 11(1): 11024, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040035

RESUMEN

Dendrochronology is an essential tool to determine the date and provenance of wood from historical art objects. As standard methods to access the tree rings are invasive, X-ray computed tomography (CT) has been proposed for non-invasive dendrochronological investigation. While traditional CT can provide clear images of the inner structure of wooden objects, it requires their full rotation, imposing strong limitations on the size of the object. These limitations have previously encouraged investigations into alternative acquisition trajectories, including trajectories with only linear movement. In this paper, we use such a line-trajectory (LT) X-ray tomography technique to retrieve tree-ring patterns from large wooden objects. We demonstrate that by moving a wooden artifact sideways between the static X-ray source and the detector during acquisition, sharp reconstruction images of the tree rings can be produced. We validate this technique using computer simulations and two wooden test planks, and demonstrate it on a large iconic chest from the Rijksmuseum collection (Amsterdam, The Netherlands). The LT scanning method can be easily implemented in standard X-ray imaging units available at museum research facilities. Therefore, this scanning technique represents a major step towards the standard implementation of non-invasive dendrochronology on large wooden cultural heritage objects.

7.
J Imaging ; 6(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460532

RESUMEN

Circular cone-beam (CCB) Computed Tomography (CT) has become an integral part of industrial quality control, materials science and medical imaging. The need to acquire and process each scan in a short time naturally leads to trade-offs between speed and reconstruction quality, creating a need for fast reconstruction algorithms capable of creating accurate reconstructions from limited data. In this paper, we introduce the Neural Network Feldkamp-Davis-Kress (NN-FDK) algorithm. This algorithm adds a machine learning component to the FDK algorithm to improve its reconstruction accuracy while maintaining its computational efficiency. Moreover, the NN-FDK algorithm is designed such that it has low training data requirements and is fast to train. This ensures that the proposed algorithm can be used to improve image quality in high-throughput CT scanning settings, where FDK is currently used to keep pace with the acquisition speed using readily available computational resources. We compare the NN-FDK algorithm to two standard CT reconstruction algorithms and to two popular deep neural networks trained to remove reconstruction artifacts from the 2D slices of an FDK reconstruction. We show that the NN-FDK reconstruction algorithm is substantially faster in computing a reconstruction than all the tested alternative methods except for the standard FDK algorithm and we show it can compute accurate CCB CT reconstructions in cases of high noise, a low number of projection angles or large cone angles. Moreover, we show that the training time of an NN-FDK network is orders of magnitude lower than the considered deep neural networks, with only a slight reduction in reconstruction accuracy.

8.
J Imaging ; 6(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-34460720

RESUMEN

In tomographic imaging, the traditional process consists of an expert and an operator collecting data, the expert working on the reconstructed slices and drawing conclusions. The quality of reconstructions depends heavily on the quality of the collected data, except that, in the traditional process of imaging, the expert has very little influence over the acquisition parameters, experimental plan or the collected data. It is often the case that the expert has to draw limited conclusions from the reconstructions, or adapt a research question to data available. This method of imaging is static and sequential, and limits the potential of tomography as a research tool. In this paper, we propose a more dynamic process of imaging where experiments are tailored around a sample or the research question; intermediate reconstructions and analysis are available almost instantaneously, and expert has input at any stage of the process (including during acquisition) to improve acquisition or image reconstruction. Through various applications of 2D, 3D and dynamic 3D imaging at the FleX-ray Laboratory, we present the unexpected journey of exploration a research question undergoes, and the surprising benefits it yields.

9.
Sci Rep ; 9(1): 18379, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804524

RESUMEN

Tomographic X-ray microscopy beamlines at synchrotron light sources worldwide have pushed the achievable time-resolution for dynamic 3-dimensional structural investigations down to a fraction of a second, allowing the study of quickly evolving systems. The large data rates involved impose heavy demands on computational resources, making it difficult to readily process and interrogate the resulting volumes. The data acquisition is thus performed essentially blindly. Such a sequential process makes it hard to notice problems with the measurement protocol or sample conditions, potentially rendering the acquired data unusable, and it keeps the user from optimizing the experimental parameters of the imaging task at hand. We present an efficient approach to address this issue based on the real-time reconstruction, visualisation and on-the-fly analysis of a small number of arbitrarily oriented slices. This solution, requiring only a single additional computing workstation, has been implemented at the TOMCAT beamline of the Swiss Light Source. The system is able to process multiple sets of slices per second, thus pushing the reconstruction throughput on the same level as the data acquisition. This enables the monitoring of dynamic processes as they occur and represents the next crucial step towards adaptive feedback control of time-resolved in situ tomographic experiments.

10.
Ultramicroscopy ; 194: 133-142, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30130724

RESUMEN

Energy-dispersive X-ray spectroscopic (EDS) tomography is a powerful three-dimensional (3D) imaging technique for characterizing the chemical composition and structure of nanomaterials. However, the accuracy and resolution are typically hampered by the limited number of tilt images that can be measured and the low signal-to-noise ratios (SNRs) of the energy-resolved tilt images. Various sophisticated reconstruction algorithms have been proposed for specific types of samples and imaging conditions, yet deciding on which algorithm to use for each new case remains a complex problem. In this paper, we propose to tailor the reconstruction algorithm for EDS tomography in three aspects: (1) model the reconstruction problem based on an accurate assumption of the data statistics; (2) regularize the reconstruction to incorporate prior knowledge; (3) apply bimodal tomography to augment the EDS data with a high-SNR modality. Methods for the three aspects can be combined in one reconstruction procedure as three modules. Therefore, a reconstruction algorithm can be constructed as a 'recipe'. We also provide guidelines for preparing the recipe based on conditions and assumptions for the data. We investigate the effects of different recipes on both simulated data and real experimental data. The results show that the preferred recipe depends on both acquisition conditions and sample properties, and that the image quality can be enhanced using a properly tailored recipe.

11.
Ultramicroscopy ; 191: 34-43, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758411

RESUMEN

Energy-dispersive X-ray spectroscopy (EDS) tomography is an advanced technique to characterize compositional information for nanostructures in three dimensions (3D). However, the application is hindered by the poor image quality caused by the low signal-to-noise ratios and the limited number of tilts, which are fundamentally limited by the insufficient number of X-ray counts. In this paper, we explore how to make accurate EDS reconstructions from such data. We propose to augment EDS tomography by joining with it a more accurate high-angle annular dark-field STEM (HAADF-STEM) tomographic reconstruction, for which usually a larger number of tilt images are feasible. This augmentation is realized through total nuclear variation (TNV) regularization, which encourages the joint EDS and HAADF reconstructions to have not only sparse gradients but also common edges and parallel (or antiparallel) gradients. Our experiments show that reconstruction images are more accurate compared to the non-regularized and the total variation regularized reconstructions, even when the number of tilts is small or the X-ray counts are low.

12.
Ultramicroscopy ; 184(Pt B): 57-65, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29096395

RESUMEN

HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed to be a linear projection of a physical property of the specimen. However, this assumption of linearity is not completely valid due to the nonlinear damping of signal intensities. The nonlinear damping effects increase w.r.t the specimen thickness and lead to so-called "cupping artifacts", due to a mismatch with the linear model used in the reconstruction algorithm. Moreover, nonlinear damping effects can strongly limit the applicability of advanced reconstruction approaches such as Total Variation Minimization and discrete tomography. In this paper, we propose an algorithm for automatically correcting the nonlinear effects and the subsequent cupping artifacts. It is applicable to samples in which chemical compositions can be segmented based on image gray levels. The correction is realized by iteratively estimating the nonlinear relationship between projection intensity and sample thickness, based on which the projections are linearized. The correction and reconstruction algorithms are tested on simulated and experimental data.

13.
Adv Struct Chem Imaging ; 2(1): 19, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28018839

RESUMEN

While iterative reconstruction algorithms for tomography have several advantages compared to standard backprojection methods, the adoption of such algorithms in large-scale imaging facilities is still limited, one of the key obstacles being their high computational load. Although GPU-enabled computing clusters are, in principle, powerful enough to carry out iterative reconstructions on large datasets in reasonable time, creating efficient distributed algorithms has so far remained a complex task, requiring low-level programming to deal with memory management and network communication. The ASTRA toolbox is a software toolbox that enables rapid development of GPU accelerated tomography algorithms. It contains GPU implementations of forward and backprojection operations for many scanning geometries, as well as a set of algorithms for iterative reconstruction. These algorithms are currently limited to using GPUs in a single workstation. In this paper, we present an extension of the ASTRA toolbox and its Python interface with implementations of forward projection, backprojection and the SIRT algorithm that can be distributed over multiple GPUs and multiple workstations, as well as the tools to write distributed versions of custom reconstruction algorithms, to make processing larger datasets with ASTRA feasible. As a result, algorithms that are implemented in a high-level conceptual script can run seamlessly on GPU-enabled computing clusters, up to 32 GPUs or more. Our approach is not limited to slice-based reconstruction, facilitating a direct portability of algorithms coded for parallel-beam synchrotron tomography to cone-beam laboratory tomography setups without making changes to the reconstruction algorithm.

14.
Phys Med Biol ; 62(19): 7784-7797, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28854154

RESUMEN

As a result of the shallow depth of focus of the optical imaging system, the use of standard filtered back projection in optical projection tomography causes space-variant tangential blurring that increases with the distance to the rotation axis. We present a novel optical tomographic image reconstruction technique that incorporates the point spread function of the imaging lens in an iterative reconstruction. The technique is demonstrated using numerical simulations, tested on experimental optical projection tomography data of single fluorescent beads, and applied to high-resolution emission optical projection tomography imaging of an entire zebrafish larva. Compared to filtered back projection our results show greatly reduced radial and tangential blurring over the entire [Formula: see text] mm2 field of view, and a significantly improved signal to noise ratio.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Óptica/métodos , Humanos
15.
IEEE Trans Image Process ; 25(1): 455-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26642453

RESUMEN

In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental µCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.

16.
Nanoscale ; 8(1): 292-9, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26607629

RESUMEN

Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10,000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques failed.

17.
Med Phys ; 42(5): 2709-17, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25979069

RESUMEN

PURPOSE: Projections acquired with continuous gantry rotation may suffer from blurring effects, depending on the rotation speed and the exposure time of each projection. This leads to blurred reconstructions if conventional reconstruction algorithms are applied. In this paper, the authors propose a reconstruction method for fast acquisitions based on a continuously moving and continuously emitting x-ray source. They study the trade-off between total acquisition time and reconstruction quality and compare with conventional reconstructions using projections acquired with a stepwise moving x-ray source. METHODS: The authors introduce the algebraic reconstruction technique with angular integration concept, which models the angular integration due to the relative motion of the x-ray source during the projection. RESULTS: Compared to conventional reconstruction from projections acquired with pulsed x-ray emission, the proposed method results in substantially improved reconstruction quality around the center of rotation. Outside this region, the proposed method results in improved radial resolution and a decreased tangential resolution. For a fixed reconstruction quality of this region of interest, the proposed method enables a lower number of projections and thus a faster acquisition. CONCLUSIONS: The modeling of the continuous gantry rotation in the proposed method substantially improves the reconstruction quality in a region of interest around the rotation center. The proposed method shows potential for fast region of interest tomography.


Asunto(s)
Tomografía Computarizada por Rayos X/métodos , Algoritmos , Modelos Biológicos , Fantasmas de Imagen , Rotación , Sincrotrones , Factores de Tiempo , Tomografía Computarizada por Rayos X/instrumentación
18.
Ultramicroscopy ; 157: 35-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26057688

RESUMEN

We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of the software tools that are currently used in electron tomography offer limited flexibility with respect to the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flexibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of experiments, based on experimental dual-axis tilt series.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA