Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 146(8): 5569-5579, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353048

RESUMEN

The classical view of the structural changes that occur at the ferroelectric transition in perovskite-structured systems, such as BaTiO3, is that polarization occurs due to the off-center displacement of the B-site cations. Here, we show that in the bismuth sodium titanate (BNT)-based composition 0.2(Ba0.4Sr0.6TiO3)-0.8(Bi0.5Na0.5TiO3), this model does not accurately describe the structural situation. Such BNT-based systems are of interest as lead-free alternatives to currently used materials in a variety of piezo-/ferroelectric applications. A combination of high-resolution powder neutron diffraction, impedance spectroscopy, and ab initio calculations reveals that Ti4+ contributes less than a third in magnitude to the overall polarization and that the displacements of the O2- ions and the A-site cations, particularly Bi3+, are very significant. The detailed examination of the ferroelectric transition in this system offers insights applicable to the understanding of such transitions in other ferroelectric perovskites, particularly those containing lone pair elements.

2.
Small ; 19(45): e2302795, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415517

RESUMEN

Pyridinic nitrogen has been recognized as the primary active site in nitrogen-doped carbon electrocatalysts for the oxygen reduction reaction (ORR), which is a critical process in many renewable energy devices. However, the preparation of nitrogen-doped carbon catalysts comprised of exclusively pyridinic nitrogen remains challenging, as well as understanding the precise ORR mechanisms on the catalyst. Herein, a novel process is developed using pyridyne reactive intermediates to functionalize carbon nanotubes (CNTs) exclusively with pyridine rings for ORR electrocatalysis. The relationship between the structure and ORR performance of the prepared materials is studied in combination with density functional theory calculations to probe the ORR mechanism on the catalyst. Pyridinic nitrogen can contribute to a more efficient 4-electron reaction pathway, while high level of pyridyne functionalization result in negative structural effects, such as poor electrical conductivity, reduced surface area, and small pore diameters, that suppressed the ORR performance. This study provides insights into pyridine-doped CNTs-functionalized for the first time via pyridyne intermediates-as applied in the ORR and is expected to serve as valuable inspiration in designing high-performance electrocatalysts for energy applications.

3.
Bioconjug Chem ; 34(1): 78-84, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35969686

RESUMEN

The ability to control the assembly of mixed-dimensional heterostructures with nanoscale control is key for the fabrication of novel nanohybrid systems with new functionalities, particularly for optoelectronics applications. Herein we report a strategy to control the assembly of heterostructures and tune their electronic coupling employing DNA as a linker. We functionalized MoS2 nanosheets (NSs) with biotin-terminated dsDNA employing three different chemical strategies, namely, thiol, maleimide, and aryl diazonium. This allowed us to then tether streptavidinated quantum dots (QDs) to the DNA functionalized MoS2 surface via biotin-avidin recognition. Nanoscale control over the separation between QDs and NSs was achieved by varying the number of base pairs (bp) constituting the DNA linker, between 10, 20, and 30 bp, corresponding to separations of 3.4, 6.8, and 13.6 nm, respectively. Spectroscopic data confirmed the successful functionalization, while atomic force and transmission electron microscopy were employed to image the nanohybrids. In solution steady-state and time-resolved photoluminescence demonstrated the electronic coupling between the two nanostructures, that in turn was observed to progressively scale as a function of DNA linker employed and hence distance between the two nanomoieties in the hybrids.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Puntos Cuánticos/química , Molibdeno/química , Biotina/química , Nanoestructuras/química , ADN
4.
Molecules ; 28(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175096

RESUMEN

DNA is programmed to hierarchically self-assemble into superstructures spanning from nanometer to micrometer scales. Here, we demonstrate DNA nanosheets assembled out of a rationally designed flexible DNA unit (F-unit), whose shape resembles a Feynman diagram. F-units were designed to self-assemble in two dimensions and to display a high DNA density of hydrophobic moieties. oxDNA simulations confirmed the planarity of the F-unit. DNA nanosheets with a thickness of a single DNA duplex layer and with large coverage (at least 30 µm × 30 µm) were assembled from the liquid phase at the solid/liquid interface, as unambiguously evidenced by atomic force microscopy imaging. Interestingly, single-layer nanodiscs formed in solution at low DNA concentrations. DNA nanosheet superstructures were further assembled at liquid/liquid interfaces, as demonstrated by the fluorescence of a double-stranded DNA intercalator. Moreover, the interfacial mechanical properties of the nanosheet superstructures were measured as a response to temperature changes, demonstrating the control of interfacial shear mechanics based on DNA nanostructure engineering. The rational design of the F-unit, along with the presented results, provide an avenue toward the controlled assembly of reconfigurable/responsive nanosheets and membranes at liquid/liquid interfaces, to be potentially used in the characterization of biomechanical processes and materials transport.


Asunto(s)
Nanoestructuras , Nanotecnología , Nanotecnología/métodos , Nanoestructuras/química , Microscopía de Fuerza Atómica , Simulación por Computador , ADN/química
5.
Molecules ; 28(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903408

RESUMEN

Here we present an approach to functionalize silanized single-walled carbon nanotubes (SWNTs) through copper-free click chemistry for the assembly of inorganic and biological nanohybrids. The nanotube functionalization route involves silanization and strain-promoted azide-alkyne cycloaddition reactions (SPACC). This was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and Fourier transform infra-red spectroscopy. Silane-azide-functionalized SWNTs were immobilized from solution onto patterned substrates through dielectrophoresis (DEP). We demonstrate the general applicability of our strategy for the functionalization of SWNTs with metal nanoparticles (gold nanoparticles), fluorescent dyes (Alexa Fluor 647) and biomolecules (aptamers). In this regard, dopamine-binding aptamers were conjugated to the functionalized SWNTs to perform real-time detection of dopamine at different concentrations. Additionally, the chemical route is shown to selectively functionalize individual nanotubes grown on the surface of silicon substrates, contributing towards future nano electronic device applications.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Nanotubos de Carbono/química , Oro , Azidas/química , Dopamina
6.
Chembiochem ; 23(23): e202200282, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36193790

RESUMEN

Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos
7.
Inorg Chem ; 61(50): 20316-20325, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36472578

RESUMEN

Antiferroelectric (AFE) materials have been intensively studied due to their potential uses in energy storage applications and energy conversion. These materials are characterized by double polarization-electric field (P-E) hysteresis loops and nonpolar crystal structures. Unusually, in the present work, Sr1.68La0.32Ta1.68Ti0.32O7 (STLT32), Sr1.64La0.36Ta1.64Ti0.36O7 (STLT36), and Sr1.85Ca0.15Ta2O7 (SCT15), lead-free perovskite layered structure (PLS) materials, are shown to exhibit AFE-like double P-E hysteresis loops despite maintaining a polar crystal structure. The double hysteresis loops are present over wide ranges of electric field and temperature. While neutron diffraction and piezoresponse force microscopy results indicate that the STLT32 system should be ferroelectric at room temperature, the observed AFE-like electrical behavior suggests that the electrical response is dominated by a weakly polar phase with a field-induced transition to a more strongly polar phase. Variable-temperature dielectric measurements suggest the presence of two-phase transitions in STLT32 at ca. 250 and 750 °C. The latter transition is confirmed by thermal analysis and is accompanied by structural changes in the layers, such as in the degree of octahedral tilting and changes in the perovskite block width and interlayer gap, associated with a change from non-centrosymmetric to centrosymmetric structures. The lower-temperature transition is more diffuse in nature but is evidenced by subtle changes in the lattice parameters. The dielectric properties of an STLT32 ceramic at microwave frequencies was measured using a coplanar waveguide transmission line and revealed stable permittivity from 1 kHz up to 20 GHz with low dielectric loss. This work represents the first observation of its kind in a PLS-type material.

8.
Faraday Discuss ; 227: 233-244, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404023

RESUMEN

Controlling the assembly of molybdenum disulfide (MoS2) layers into static and dynamic superstructures can impact on their use in optoelectronics, energy, and drug delivery. Toward this goal, we present a strategy to drive the assembly of MoS2 layers via the hybridization of complementary DNA linkers. By functionalizing the MoS2 surface with thiolated DNA, MoS2 nanosheets were assembled into mulitlayered superstructures, and the complementary DNA strands were used as linkers. A disassembly process was triggered by the formation of an intramolecular i-motif structure at a cystosine-rich sequence in the DNA linker at acidic pH values. We tested the versatility of our approach by driving the disassembly of the MoS2 superstructures through a different DNA-based mechanism, namely strand displacement. This study demonstrates how DNA can be employed to drive the static and dynamic assembly of MoS2 nanosheets in aqueous solution.


Asunto(s)
Molibdeno , Nanoestructuras , ADN , Sistemas de Liberación de Medicamentos , Hibridación de Ácido Nucleico
9.
Angew Chem Int Ed Engl ; 60(37): 20184-20189, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34270157

RESUMEN

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a ß-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important ß-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono/química , Proteínas/química , Semiconductores , Electricidad Estática
10.
J Biol Chem ; 294(19): 7566-7572, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30948512

RESUMEN

The ability of amyloid-ß peptide (Aß) to disrupt membrane integrity and cellular homeostasis is believed to be central to Alzheimer's disease pathology. Aß is reported to have various impacts on the lipid bilayer, but a clearer picture of Aß influence on membranes is required. Here, we use atomic force and transmission electron microscopies to image the impact of different isolated Aß assembly types on lipid bilayers. We show that only oligomeric Aß can profoundly disrupt the bilayer, visualized as widespread lipid extraction and subsequent deposition, which can be likened to an effect expected from the action of a detergent. We further show that Aß oligomers cause widespread curvature and discontinuities within lipid vesicle membranes. In contrast, this detergent-like effect was not observed for Aß monomers and fibers, although Aß fibers did laterally associate and embed into the upper leaflet of the bilayer. The marked impact of Aß oligomers on membrane integrity identified here reveals a mechanism by which these oligomers may be cytotoxic.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/química , Membrana Dobles de Lípidos/química , Multimerización de Proteína , Péptidos beta-Amiloides/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo
11.
Faraday Discuss ; 219(0): 203-219, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31314021

RESUMEN

Nanoscale organisation of receptor ligands has become an important approach to study the clustering behaviour of cell-surface receptors. Biomimetic substrates fabricated via different nanopatterning strategies have so far been applied to investigate specific integrins and cell types, but without multivalent control. Here we use DNA origami to surpass the limits of current approaches and fabricate nanoarrays to study different cell adhesion processes, with nanoscale spatial resolution and single-molecule control. Notably, DNA nanostructures enable the display of receptor ligands in a highly customisable manner, with modifiable parameters including ligand number, ligand spacing and most importantly, multivalency. To test the adaptability and robustness of the system we combined it with focused ion beam and electron-beam lithography nanopatterning to additionally control the distance between the origami structures (i.e. receptor clusters). Moreover, we demonstrate how the platform can be used to interrogate two different biological questions: (1) the cooperative effect of integrin and growth factor receptor in cancer cell spreading, and (2) the role of integrin clustering in cardiomyocyte adhesion and maturation. Thereby we find previously unknown clustering behaviour of different integrins, further outlining the importance for such customisable platforms for future investigations of specific receptor organisation at the nanoscale.


Asunto(s)
ADN/química , Nanoestructuras/química , Receptores de Superficie Celular/análisis , Análisis de Matrices Tisulares/métodos , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Células Cultivadas , Humanos , Integrinas/análisis , Melanoma/patología , Miocitos Cardíacos/citología , Nanotecnología , Ratas , Receptores de Factores de Crecimiento/análisis , Neoplasias Cutáneas/patología
12.
Nano Lett ; 18(7): 4130-4135, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29923734

RESUMEN

Here we report on the fabrication of reconfigurable and solution processable nanoscale biosensors with multisensing capability, based on single-walled carbon nanotubes (SWCNTs). Distinct DNA-wrapped (hence water-soluble) CNTs were immobilized from solution onto different prepatterned electrodes on the same chip, via a low-cost dielectrophoresis (DEP) methodology. The CNTs were functionalized with specific, and different, aptamer sequences that were employed as selective recognition elements for biomarkers indicative of stress and neuro-trauma conditions. Multiplexed detection of three different biomarkers was successfully performed, and real-time detection was achieved in serum down to physiologically relevant concentrations of 50 nM, 10 nM, and 500 pM for cortisol, dehydroepiandrosterone-sulfate (DHEAS), and neuropeptide Y (NPY), respectively. Additionally, the fabricated nanoscale devices were shown to be reconfigurable and reusable via a simple cleaning procedure. The general applicability of the strategy presented, and the facile device fabrication from aqueous solution, hold great potential for the development of the next generation of low power consumption portable diagnostic assays for the simultaneous monitoring of different health parameters.

13.
Angew Chem Int Ed Engl ; 58(29): 9928-9932, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31059175

RESUMEN

We present the synthesis of metal nanowires in a multiplexed device configuration using single-walled carbon nanotubes (SWNTs) as nanoscale vector templates. The SWNT templates control the dimensionality of the wires, allowing precise control of their size, shape, and orientation; moreover, a solution-processable approach enables their linear deposition between specific electrode pairs in electronic devices. Electrical characterization demonstrated the successful fabrication of metal nanowire electronic devices, while multiscale characterization of the different fabrication steps revealed details of the structure and charge transfer between the material encapsulated and the carbon nanotube. Overall the strategy presented allows facile, low-cost, and direct synthesis of multiplexed metal nanowire devices for nanoelectronic applications.

14.
Small ; 14(28): e1800863, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29862640

RESUMEN

Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.


Asunto(s)
Bencenosulfonatos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Impresión Molecular/métodos , Neuroglía/metabolismo , Polímeros/química , Animales , Astrocitos/citología , Quimiocinas/metabolismo , Técnicas Electroquímicas , Microelectrodos , Ratas Sprague-Dawley , Ratas Wistar
15.
J Am Chem Soc ; 139(49): 17834-17840, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29148737

RESUMEN

We report the site-specific coupling of single proteins to individual carbon nanotubes (CNTs) in solution and with single-molecule control. Using an orthogonal Click reaction, Green Fluorescent Protein (GFP) was engineered to contain a genetically encoded azide group and then bound to CNT ends in different configurations: in close proximity or at longer distances from the GFP's functional center. Atomic force microscopy and fluorescence analysis in solution and on surfaces at the single-protein level confirmed the importance of bioengineering optimal protein attachment sites to achieve direct protein-nanotube communication and bridging.

16.
Small ; 13(16)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186366

RESUMEN

A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.

17.
J Am Chem Soc ; 138(9): 2905-8, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26854787

RESUMEN

Here we present a solution-based assembly method for producing molecular transport junctions employing metallic single-walled carbon nanotubes as nanoelectrodes. The molecular junction conductance of a series of oligophenyls was successfully measured, highlighting the potential of an all-carbon based approach for the fabrication of solution-processable single-molecule junctions for molecular electronics.

19.
Nano Lett ; 15(10): 6547-52, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26340414

RESUMEN

A key impediment to the implementation of a nanoelectronics technology based on single wall carbon nanotubes (SWCNTs) is the inability to arrange them in a manner suitable for integration into complex circuits. As a step toward addressing this problem, we explore the binding of fixed-length, end-functionalized SWCNT segments to lithographically defined nanoscale anchors, such that individual SWCNTs can be placed with control over position and orientation. Both monovalent and bivalent bindings are explored using covalent and noncovalent binding chemistries. Placement efficiency is assessed in terms of overall yield of SWCNT binding, as well as binding specificity and the degree of nonspecific binding. Placement yields as high as 93% and 79% are achieved, respectively, for covalent binding and for binding through DNA hybridization. Orientational control of the SWCNT segments is achieved with 95% and 51% efficiency for monovalent and bivalent bindings, respectively. This represents a new approach that could pave the way toward complex SWCNT devices and circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA