Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(14): 7958-7972, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32597966

RESUMEN

Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine to inosine in duplex RNA, a modification that exhibits a multitude of effects on RNA structure and function. Recent studies have identified ADAR1 as a potential cancer therapeutic target. ADARs are also important in the development of directed RNA editing therapeutics. A comprehensive understanding of the molecular mechanism of the ADAR reaction will advance efforts to develop ADAR inhibitors and new tools for directed RNA editing. Here we report the X-ray crystal structure of a fragment of human ADAR2 comprising its deaminase domain and double stranded RNA binding domain 2 (dsRBD2) bound to an RNA duplex as an asymmetric homodimer. We identified a highly conserved ADAR dimerization interface and validated the importance of these sequence elements on dimer formation via gel mobility shift assays and size exclusion chromatography. We also show that mutation in the dimerization interface inhibits editing in an RNA substrate-dependent manner for both ADAR1 and ADAR2.


Asunto(s)
Adenosina Desaminasa/química , Adenosina Desaminasa/metabolismo , Edición de ARN , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , ARN Bicatenario/química , Proteínas de Unión al ARN/genética
2.
Chembiochem ; 21(11): 1633-1640, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31943634

RESUMEN

Specific applications of CRISPR/Cas genome editing systems benefit from chemical modifications of the sgRNA. Herein we describe a versatile and efficient strategy for functionalization of the 3'-end of a sgRNA. An exemplary collection of six chemically modified sgRNAs was prepared containing crosslinkers, a fluorophore and biotin. Modification of the sgRNA 3'-end was broadly tolerated by Streptococcus pyogenes Cas9 in an in vitro DNA cleavage assay. The 3'-biotinylated sgRNA was used as an affinity reagent to identify IGF2BP1, YB1 and hnRNP K as sgRNA-binding proteins present in HEK293T cells. Overall, the modification strategy presented here has the potential to expand on current applications of CRISPR/Cas systems.


Asunto(s)
Biotina/química , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , ADN/química , Edición Génica/métodos , ARN Guía de Kinetoplastida/química , Sitios de Unión , Biotinilación , Proteína 9 Asociada a CRISPR/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , División del ADN , Colorantes Fluorescentes/química , Expresión Génica , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
3.
Methods ; 156: 46-52, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30827466

RESUMEN

Over 150 unique RNA modifications are now known including several nonstandard nucleotides present in the body of messenger RNAs. These modifications can alter a transcript's function and are collectively referred to as the epitrancriptome. Chemically modified nucleoside analogs are poised to play an important role in the study of these epitranscriptomic marks. Introduced chemical features on nucleic acid strands provide unique structures or reactivity that can be used for downstream detection or quantification. Three methods are used in the field to synthesize RNA containing chemically modified nucleoside analogs. Nucleoside analogs can be introduced by metabolic labeling, via polymerases with modified nucleotide triphosphates or via phosphoramidite-based chemical synthesis. In this review, these methods for incorporation of nucleoside analogs will be discussed with specific recently published examples pertaining to the study of the epitranscriptome.


Asunto(s)
Edición de ARN , ARN Bicatenario/química , Ribonucleótidos/química , S-Adenosilmetionina/metabolismo , Coloración y Etiquetado/métodos , Transcriptoma , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Humanos , Inosina/metabolismo , Conformación de Ácido Nucleico , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleótidos/metabolismo , S-Adenosilmetionina/análogos & derivados , Selenio/química , Selenio/metabolismo
4.
Science ; 369(6503): 566-571, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32732424

RESUMEN

CRISPR-Cas-guided base editors convert A•T to G•C, or C•G to T•A, in cellular DNA for precision genome editing. To understand the molecular basis for DNA adenosine deamination by adenine base editors (ABEs), we determined a 3.2-angstrom resolution cryo-electron microscopy structure of ABE8e in a substrate-bound state in which the deaminase domain engages DNA exposed within the CRISPR-Cas9 R-loop complex. Kinetic and structural data suggest that ABE8e catalyzes DNA deamination up to ~1100-fold faster than earlier ABEs because of mutations that stabilize DNA substrates in a constrained, transfer RNA-like conformation. Furthermore, ABE8e's accelerated DNA deamination suggests a previously unobserved transient DNA melting that may occur during double-stranded DNA surveillance by CRISPR-Cas9. These results explain ABE8e-mediated base-editing outcomes and inform the future design of base editors.


Asunto(s)
Adenina/química , Adenosina Desaminasa/química , Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , ADN/química , Proteínas de Escherichia coli/química , Edición Génica , Adenosina Desaminasa/genética , Proteína 9 Asociada a CRISPR/genética , Microscopía por Crioelectrón , Desaminación , Proteínas de Escherichia coli/genética
5.
Cell Chem Biol ; 26(2): 269-277.e5, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30581135

RESUMEN

Molecules capable of directing changes to nucleic acid sequences are powerful tools for molecular biology and promising candidates for the therapeutic correction of disease-causing mutations. However, unwanted reactions at off-target sites complicate their use. Here we report selective combinations of mutant editing enzyme and directing oligonucleotide. Mutations in human ADAR2 (adenosine deaminase acting on RNA 2) that introduce aromatic amino acids at position 488 reduce background RNA editing. This residue is juxtaposed to the nucleobase that pairs with the editing site adenine, suggesting a steric clash for the bulky mutants. Replacing this nucleobase with a hydrogen atom removes the clash and restores editing activity. A crystal structure of the E488Y mutant bound to abasic site-containing RNA shows the accommodation of the tyrosine side chain. Finally, we demonstrate directed RNA editing in vitro and in human cells using mutant ADAR2 proteins and modified guide RNAs with reduced off-target activity.


Asunto(s)
Edición Génica/métodos , ARN/química , Adenosina/química , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Línea Celular , Cristalografía por Rayos X , Humanos , Mutagénesis Sitio-Dirigida , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
J Am Soc Mass Spectrom ; 29(8): 1745-1756, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29949056

RESUMEN

The analytical identification of positional isomers (e.g., 3-, N4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2+) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. Graphical Abstract ᅟ.


Asunto(s)
Cromatografía Liquida/métodos , Dermatoglifia del ADN/métodos , Nucleósidos , Espectrometría de Masas en Tándem/métodos , Iones/análisis , Iones/química , Isomerismo , Nucleósidos/análisis , Nucleósidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA