Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38220577

RESUMEN

Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task, a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow, gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.


Asunto(s)
Magnetoencefalografía , Memoria a Corto Plazo , Humanos , Memoria Espacial , Cognición
2.
J Neurosci ; 43(45): 7642-7656, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37816599

RESUMEN

The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transition. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear. Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dynamics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencephalography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying degrees of bistability in neuronal oscillations from 3 to 200 Hz. In line with our modeling results, the neuronal bistability was positively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epileptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics in a continuum between continuous and discontinuous phase transitions.SIGNIFICANCE STATEMENT In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects, and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.


Asunto(s)
Epilepsia , Neocórtex , Masculino , Adulto , Femenino , Humanos , Encéfalo/fisiología , Electroencefalografía/métodos , Mapeo Encefálico , Simulación por Computador
3.
Epilepsia ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687176

RESUMEN

OBJECTIVE: Postsurgical seizure freedom in drug-resistant epilepsy (DRE) patients varies from 30% to 80%, implying that in many cases the current approaches fail to fully map the epileptogenic zone (EZ). We aimed to advance a novel approach to better characterize epileptogenicity and investigate whether the EZ encompasses a broader epileptogenic network (EpiNet) beyond the seizure zone (SZ) that exhibits seizure activity. METHODS: We first used computational modeling to test putative complex systems-driven and systems neuroscience-driven mechanistic biomarkers for epileptogenicity. We then used these biomarkers to extract features from resting-state stereoelectroencephalograms recorded from DRE patients and trained supervised classifiers to localize the SZ against gold standard clinical localization. To further explore the prevalence of pathological features in an extended brain network outside of the clinically identified SZ, we also used unsupervised classification. RESULTS: Supervised SZ classification trained on individual features achieved accuracies of .6-.7 area under the receiver operating characteristic curve (AUC). Combining all criticality and synchrony features further improved the AUC to .85. Unsupervised classification discovered an EpiNet-like cluster of brain regions, in which 51% of brain regions were outside of the SZ. Brain regions in the EpiNet-like cluster engaged in interareal hypersynchrony and locally exhibited high-amplitude bistability and excessive inhibition, which was strikingly similar to the high seizure risk regime revealed by our computational modeling. SIGNIFICANCE: The finding that combining biomarkers improves SZ localization accuracy indicates that the novel mechanistic biomarkers for epileptogenicity employed here yield synergistic information. On the other hand, the discovery of SZ-like brain dynamics outside of the clinically defined SZ provides empirical evidence of an extended pathophysiological EpiNet.

4.
PLoS Biol ; 18(5): e3000685, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32374723

RESUMEN

Phase synchronization of neuronal oscillations in specific frequency bands coordinates anatomically distributed neuronal processing and communication. Typically, oscillations and synchronization take place concurrently in many distinct frequencies, which serve separate computational roles in cognitive functions. While within-frequency phase synchronization has been studied extensively, less is known about the mechanisms that govern neuronal processing distributed across frequencies and brain regions. Such integration of processing between frequencies could be achieved via cross-frequency coupling (CFC), either by phase-amplitude coupling (PAC) or by n:m-cross-frequency phase synchrony (CFS). So far, studies have mostly focused on local CFC in individual brain regions, whereas the presence and functional organization of CFC between brain areas have remained largely unknown. We posit that interareal CFC may be essential for large-scale coordination of neuronal activity and investigate here whether genuine CFC networks are present in human resting-state (RS) brain activity. To assess the functional organization of CFC networks, we identified brain-wide CFC networks at mesoscale resolution from stereoelectroencephalography (SEEG) and at macroscale resolution from source-reconstructed magnetoencephalography (MEG) data. We developed a novel, to our knowledge, graph-theoretical method to distinguish genuine CFC from spurious CFC that may arise from nonsinusoidal signals ubiquitous in neuronal activity. We show that genuine interareal CFC is present in human RS activity in both SEEG and MEG data. Both CFS and PAC networks coupled theta and alpha oscillations with higher frequencies in large-scale networks connecting anterior and posterior brain regions. CFS and PAC networks had distinct spectral patterns and opposing distribution of low- and high-frequency network hubs, implying that they constitute distinct CFC mechanisms. The strength of CFS networks was also predictive of cognitive performance in a separate neuropsychological assessment. In conclusion, these results provide evidence for interareal CFS and PAC being 2 distinct mechanisms for coupling oscillations across frequencies in large-scale brain networks.


Asunto(s)
Encéfalo/fisiología , Conectoma , Sincronización de Fase en Electroencefalografía , Encéfalo/diagnóstico por imagen , Epilepsia/fisiopatología , Humanos , Imagen por Resonancia Magnética , Modelos Neurológicos , Pruebas Neuropsicológicas
5.
Neuroimage ; 255: 119203, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35413442

RESUMEN

Chunking language has been proposed to be vital for comprehension enabling the extraction of meaning from a continuous stream of speech. However, neurocognitive mechanisms of chunking are poorly understood. The present study investigated neural correlates of chunk boundaries intuitively identified by listeners in natural speech drawn from linguistic corpora using magneto- and electroencephalography (MEEG). In a behavioral experiment, subjects marked chunk boundaries in the excerpts intuitively, which revealed highly consistent chunk boundary markings across the subjects. We next recorded brain activity to investigate whether chunk boundaries with high and medium agreement rates elicit distinct evoked responses compared to non-boundaries. Pauses placed at chunk boundaries elicited a closure positive shift with the sources over bilateral auditory cortices. In contrast, pauses placed within a chunk were perceived as interruptions and elicited a biphasic emitted potential with sources located in the bilateral primary and non-primary auditory areas with right-hemispheric dominance, and in the right inferior frontal cortex. Furthermore, pauses placed at stronger boundaries elicited earlier and more prominent activation over the left hemisphere suggesting that brain responses to chunk boundaries of natural speech can be modulated by the relative strength of different linguistic cues, such as syntactic structure and prosody.


Asunto(s)
Percepción del Habla , Habla , Electroencefalografía , Humanos , Lenguaje , Lingüística , Memoria , Habla/fisiología , Percepción del Habla/fisiología
6.
Mol Psychiatry ; 26(12): 7247-7256, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34321594

RESUMEN

Elevated states of brain plasticity typical for critical periods of early postnatal life can be reinstated in the adult brain through interventions, such as antidepressant treatment and environmental enrichment, and induced plasticity may be critical for the antidepressant action. Parvalbumin-positive (PV) interneurons regulate the closure of developmental critical periods and can alternate between high and low plasticity states in response to experience in adulthood. We now show that PV plasticity states and cortical networks are regulated through the activation of TrkB neurotrophin receptors. Visual cortical plasticity induced by fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant, was lost in mice with reduced expression of TrkB in PV interneurons. Conversely, optogenetic gain-of-function studies revealed that activation of an optically activatable TrkB (optoTrkB) specifically in PV interneurons switches adult cortical networks into a state of elevated plasticity within minutes by decreasing the intrinsic excitability of PV interneurons, recapitulating the effects of fluoxetine. TrkB activation shifted cortical networks towards a low PV configuration, promoting oscillatory synchrony, increased excitatory-inhibitory balance, and ocular dominance plasticity. OptoTrkB activation promotes the phosphorylation of Kv3.1 channels and reduces the expression of Kv3.2 mRNA providing a mechanism for the lower excitability. In addition, decreased expression and puncta of Synaptotagmin2 (Syt2), a presynaptic marker of PV interneurons involved in Ca2+-dependent neurotransmitter release, suggests lower inputs onto pyramidal neurons suppressing feed-forward inhibition. Together, the results provide mechanistic insights into how TrkB activation in PV interneurons orchestrates the activity of cortical networks and mediating antidepressant responses in the adult brain.


Asunto(s)
Interneuronas , Plasticidad Neuronal , Corteza Visual , Animales , Interneuronas/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Transmisión Sináptica , Sinaptotagmina II/metabolismo , Corteza Visual/metabolismo
7.
Cereb Cortex ; 30(10): 5293-5308, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32484218

RESUMEN

The capacity of visual attention determines how many visual objects may be perceived at any moment. This capacity can be investigated with multiple object tracking (MOT) tasks, which have shown that it varies greatly between individuals. The neuronal mechanisms underlying capacity limits have remained poorly understood. Phase synchronization of cortical oscillations coordinates neuronal communication within the fronto-parietal attention network and between the visual regions during endogenous visual attention. We tested a hypothesis that attentional capacity is predicted by the strength of pretarget synchronization within attention-related cortical regions. We recorded cortical activity with magneto- and electroencephalography (M/EEG) while measuring attentional capacity with MOT tasks and identified large-scale synchronized networks from source-reconstructed M/EEG data. Individual attentional capacity was correlated with load-dependent strengthening of theta (3-8 Hz), alpha (8-10 Hz), and gamma-band (30-120 Hz) synchronization that connected the visual cortex with posterior parietal and prefrontal cortices. Individual memory capacity was also preceded by crossfrequency phase-phase and phase-amplitude coupling of alpha oscillation phase with beta and gamma oscillations. Our results show that good attentional capacity is preceded by efficient dynamic functional coupling and decoupling within brain regions and across frequencies, which may enable efficient communication and routing of information between sensory and attentional systems.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Sincronización Cortical , Percepción Visual/fisiología , Adulto , Ondas Encefálicas , Electroencefalografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Procesamiento de Señales Asistido por Computador , Corteza Visual/fisiología , Adulto Joven
8.
BMC Psychiatry ; 21(1): 46, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461506

RESUMEN

BACKGROUND: Video gaming is a promising intervention for cognitive and social impairment in patients with schizophrenia. A number of gaming interventions have been evaluated in small-scale studies with various patient groups, but studies on patients with schizophrenia remain scarce and rarely include the evaluation of both clinical and neurocognitive outcomes. In this study, we will test the effectiveness of two interventions with gaming elements to improve cognitive and clinical outcomes among persons with schizophrenia. METHODS: The participants will be recruited from different outpatient units (e.g., outpatient psychiatric units, day hospitals, residential care homes). The controlled clinical trial will follow a three-arm parallel-group design: 1) cognitive training (experimental group, CogniFit), 2) entertainment gaming (active control group, SIMS 4), and 3) treatment as usual. The primary outcomes are working memory function at 3-month and 6-month follow-ups. The secondary outcomes are patients' other cognitive and social functioning, the ability to experience pleasure, self-efficacy, and negative symptoms at 3-month and 6-month follow-ups. We will also test the effectiveness of gaming interventions on neurocognitive outcomes (EEG and 3 T MRI plus rs-fMRI) at a 3-month follow-up as an additional secondary outcome. Data will be collected in outpatient psychiatric services in Hong Kong. Participants will have a formal diagnosis of schizophrenia and be between 18 and 60 years old. We aim to have a total of 234 participants, randomly allocated to the three arms. A sub-sample of patients (N = 150) will be recruited to undergo an EEG. For neuroimaging assessment, patients will be randomly allocated to a subset of patients (N=126). We will estimate the efficacy of the interventions on the primary and secondary outcomes based on the intention-to-treat principle. Behavioural and EEG data will be analysed separately. DISCUSSION: The study will characterise benefits of gaming on patients' health and well-being, and contribute towards the development of new treatment approaches for patients with schizophrenia. TRIAL REGISTRATION: ClinicalTrials.gov NCT03133143 . Registered on April 28, 2017.


Asunto(s)
Esquizofrenia , Juegos de Video , Adolescente , Adulto , Cognición , Centros de Día , Hong Kong , Humanos , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Esquizofrenia/complicaciones , Esquizofrenia/terapia , Resultado del Tratamiento , Adulto Joven
9.
Conscious Cogn ; 78: 102863, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31887533

RESUMEN

Stimuli may induce only partial consciousness-an intermediate between null and full consciousness-where the presence but not identity of an object can be reported. The differences in the neuronal basis of full and partial consciousness are poorly understood. We investigated if evoked and oscillatory activity could dissociate full from partial conscious perception. We recorded human cortical activity with magnetoencephalography (MEG) during a visual perception task in which stimulus could be either partially or fully perceived. Partial consciousness was associated with an early increase in evoked activity and theta/low-alpha-band oscillations while full consciousness was also associated with late evoked activity and beta-band oscillations. Full from partial consciousness was dissociated by stronger evoked activity and late increase in theta oscillations that were localized to higher-order visual regions and posterior parietal and prefrontal cortices. Our results reveal both evoked activity and theta oscillations dissociate partial and full consciousness.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Estado de Conciencia/fisiología , Potenciales Evocados/fisiología , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Magnetoencefalografía , Masculino , Adulto Joven
10.
Neuroimage ; 165: 222-237, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074278

RESUMEN

Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention.


Asunto(s)
Atención/fisiología , Corteza Cerebral/fisiología , Sincronización Cortical/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Estimulación Luminosa , Percepción Visual/fisiología , Adulto Joven
11.
Neuroimage ; 173: 610-622, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29378318

RESUMEN

Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or "source leakage", is a significant confounder for FC analyses and network localization. Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data. Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Procesamiento de Señales Asistido por Computador , Mapeo Encefálico/métodos , Simulación por Computador , Humanos , Modelos Neurológicos
12.
Neuroimage ; 173: 632-643, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29477441

RESUMEN

When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed. Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here, however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large numbers of spurious false positive connections through field spread in the vicinity of true interactions. This fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most importantly, beyond defining and illustrating the problem of spurious, or "ghost" interactions, we provide a rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when using measures that are immune to zero-lag correlations.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Modelos Neurológicos , Artefactos , Humanos
13.
Eur J Neurosci ; 48(7): 2399-2406, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29094462

RESUMEN

Neuronal oscillations and their inter-areal synchronization may be instrumental in regulating neuronal communication in distributed networks. Several lines of research have, however, shown that cognitive tasks engage neuronal oscillations simultaneously in multiple frequency bands that have distinct functional roles in cognitive processing. Gamma oscillations (30-120 Hz) are associated with bottom-up processing, while slower oscillations in delta (1-4 Hz), theta (4-7 Hz), alpha (8-14 Hz) and beta (14-30 Hz) frequency bands may have roles in executive or top-down controlling functions, although also other distinctions have been made. Identification of the mechanisms that integrate such spectrally distributed processing and govern neuronal communication among these networks is crucial for understanding how cognitive functions are achieved in neuronal circuits. Cross-frequency interactions among oscillations have been recognized as a likely candidate mechanism for such integration. We advance here the hypothesis that phase-phase synchronization of neuronal oscillations in two different frequency bands, cross-frequency phase synchrony (CFS), could serve to integrate, coordinate and regulate neuronal processing distributed into neuronal assemblies concurrently in multiple frequency bands. A trail of studies over the past decade has revealed the presence of CFS among cortical oscillations and linked CFS with roles in cognitive integration. We propose that CFS could connect fast and slow oscillatory networks and thereby integrate distributed cognitive functions such as representation of sensory information with attentional and executive functions.


Asunto(s)
Atención/fisiología , Sincronización Cortical/fisiología , Red Nerviosa/fisiología , Percepción Visual/fisiología , Animales , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Humanos
14.
J Neurosci ; 35(13): 5385-96, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834062

RESUMEN

A growing body of evidence suggests that the neuronal dynamics are poised at criticality. Neuronal avalanches and long-range temporal correlations (LRTCs) are hallmarks of such critical dynamics in neuronal activity and occur at fast (subsecond) and slow (seconds to hours) timescales, respectively. The critical dynamics at different timescales can be characterized by their power-law scaling exponents. However, insight into the avalanche dynamics and LRTCs in the human brain has been largely obtained with sensor-level MEG and EEG recordings, which yield only limited anatomical insight and results confounded by signal mixing. We investigated here the relationship between the human neuronal dynamics at fast and slow timescales using both source-reconstructed MEG and intracranial stereotactical electroencephalography (SEEG). Both MEG and SEEG revealed avalanche dynamics that were characterized parameter-dependently by power-law or truncated-power-law size distributions. Both methods also revealed robust LRTCs throughout the neocortex with distinct scaling exponents in different functional brain systems and frequency bands. The exponents of power-law regimen neuronal avalanches and LRTCs were strongly correlated across subjects. Qualitatively similar power-law correlations were also observed in surrogate data without spatial correlations but with scaling exponents distinct from those of original data. Furthermore, we found that LRTCs in the autonomous nervous system, as indexed by heart-rate variability, were correlated in a complex manner with cortical neuronal avalanches and LRTCs in MEG but not SEEG. These scalp and intracranial data hence show that power-law scaling behavior is a pervasive but neuroanatomically inhomogeneous property of neuronal dynamics in central and autonomous nervous systems.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Neuronas/fisiología , Adolescente , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Neocórtex/citología , Neocórtex/fisiología , Factores de Tiempo , Adulto Joven
15.
Hum Brain Mapp ; 37(1): 311-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26485310

RESUMEN

Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept.


Asunto(s)
Mapeo Encefálico , Estado de Conciencia/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Dinámicas no Lineales , Corteza Somatosensorial/fisiología , Adulto , Electroencefalografía , Electromiografía , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Estimulación Física , Valor Predictivo de las Pruebas , Tiempo de Reacción/fisiología , Análisis Espectral , Factores de Tiempo , Adulto Joven
16.
Hum Brain Mapp ; 37(12): 4349-4362, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27411499

RESUMEN

How are images that have been assembled from their constituting elements maintained as a coherent representation in visual working memory (vWM)? Here, we compared two conditions of vWM maintenance that only differed in how vWM contents had been created. Participants maintained images that they either had to assemble from single features or that they had perceived as complete objects. Object complexity varied between two and four features. We analyzed electroencephalogram phase coupling as a measure of cortical connectivity in a time interval immediately before a probe stimulus appeared. We assumed that during this time both groups maintained essentially the same images, but that images constructed from their elements would require more neural coupling than images based on a complete percept. Increased coupling between frontal and parietal-to-occipital cortical sources was found for the maintenance of constructed in comparison to nonconstructed objects in the theta, alpha, beta, and gamma frequency bands. A similar pattern was found for an increase in vWM load (2 vs. 4 features) for nonconstructed objects. Under increased construction load (2 vs. 4 features for constructed images), the pattern was restricted to fronto-parietal couplings, suggesting that the fronto-parietal attention network is coping with the higher attentional demands involved in maintaining constructed images, but without increasing the communication with the occipital visual buffer in which the visual representations are assumed to be stored. We conclude from these findings that the maintenance of constructed images in vWM requires additional attentional processes to keep object elements together as a coherent representation. Hum Brain Mapp 37:4349-4362, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Imaginación/fisiología , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción , Procesamiento de Señales Asistido por Computador , Adulto Joven
17.
Hum Brain Mapp ; 37(9): 3262-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27168123

RESUMEN

Estimation of time is central to perception, action, and cognition. Human functional magnetic resonance imaging (fMRI) and positron emission topography (PET) have revealed a positive correlation between the estimation of multi-second temporal durations and neuronal activity in a circuit of sensory and motor areas, prefrontal and temporal cortices, basal ganglia, and cerebellum. The systems-level mechanisms coordinating the collective neuronal activity in these areas have remained poorly understood. Synchronized oscillations regulate communication in neuronal networks and could hence serve such coordination, but their role in the estimation and maintenance of multi-second time intervals has remained largely unknown. We used source-reconstructed magnetoencephalography (MEG) to address the functional significance of local neuronal synchronization, as indexed by the amplitudes of cortical oscillations, in time-estimation. MEG was acquired during a working memory (WM) task where the subjects first estimated and then memorized the durations, or in the contrast condition, the colors of dynamic visual stimuli. Time estimation was associated with stronger beta (ß, 14 - 30 Hz) band oscillations than color estimation in sensory regions and attentional cortical structures that earlier have been associated with time processing. In addition, the encoding of duration information was associated with strengthened gamma- (γ, 30 - 120 Hz), and the retrieval and maintenance with alpha- (α, 8 - 14 Hz) band oscillations. These data suggest that ß oscillations may provide a mechanism for estimating short temporal durations, while γ and α oscillations support their encoding, retrieval, and maintenance in memory. Hum Brain Mapp 37:3262-3281, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Corteza Cerebral/fisiología , Cognición/fisiología , Tiempo , Adulto , Mapeo Encefálico , Femenino , Humanos , Magnetoencefalografía , Masculino , Memoria a Corto Plazo/fisiología
18.
Cereb Cortex ; 25(10): 3788-801, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25405942

RESUMEN

Visual working memory (VWM) sustains information online as integrated object representations. Neuronal mechanisms supporting the maintenance of feature-specific information have remained unidentified. Synchronized oscillations in the gamma band (30-120 Hz) characterize VWM retention and predict task performance, but whether these oscillations are specific to memorized features and VWM contents or underlie general executive VWM functions is not known. In the present study, we investigated whether gamma oscillations reflect the maintenance of feature-specific information in VWM. Concurrent magneto- and electroencephalography was recorded while subjects memorized different object features or feature conjunctions in identical VWM experiments. Using a data-driven source analysis approach, we show that the strength, load-dependence, and source topographies of gamma oscillations in the visual cortex differentiate these memorized features. Load-dependence of gamma oscillations in feature-specific visual and prefrontal areas also predicts VWM accuracy. Furthermore, corroborating the hypothesis that gamma oscillations support the perceptual binding of feature-specific neuronal assemblies, we also show that VWM for color-location conjunctions is associated with stronger gamma oscillations than that for these features separately. Gamma oscillations hence support the maintenance of feature-specific information and reflect VWM contents. The results also suggest that gamma oscillations contribute to feature binding in the formation of memory representations.


Asunto(s)
Corteza Cerebral/fisiología , Ritmo Gamma , Memoria a Corto Plazo/fisiología , Percepción Visual/fisiología , Adulto , Ritmo beta , Conducta de Elección/fisiología , Electroencefalografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Corteza Visual/fisiología , Adulto Joven
19.
Proc Natl Acad Sci U S A ; 110(9): 3585-90, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401536

RESUMEN

Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Conducta/fisiología , Modelos Neurológicos , Neuronas/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Electroencefalografía , Femenino , Humanos , Masculino , Umbral Sensorial/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
20.
J Neurosci ; 34(2): 356-62, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403137

RESUMEN

Ongoing neuronal activity in the CNS waxes and wanes continuously across widespread spatial and temporal scales. In the human brain, these spontaneous fluctuations are salient in blood oxygenation level-dependent (BOLD) signals and correlated within specific brain systems or "intrinsic-connectivity networks." In electrophysiological recordings, both the amplitude dynamics of fast (1-100 Hz) oscillations and the scalp potentials per se exhibit fluctuations in the same infra-slow (0.01-0.1 Hz) frequency range where the BOLD fluctuations are conspicuous. While several lines of evidence show that the BOLD fluctuations are correlated with fast-amplitude dynamics, it has remained unclear whether the infra-slow scalp potential fluctuations in full-band electroencephalography (fbEEG) are related to the resting-state BOLD signals. We used concurrent fbEEG and functional magnetic resonance imaging (fMRI) recordings to address the relationship of infra-slow fluctuations (ISFs) in scalp potentials and BOLD signals. We show here that independent components of fbEEG recordings are selectively correlated with subsets of cortical BOLD signals in specific task-positive and task-negative, fMRI-defined resting-state networks. This brain system-specific association indicates that infra-slow scalp potentials are directly associated with the endogenous fluctuations in neuronal activity levels. fbEEG thus yields a noninvasive, high-temporal resolution window into the dynamics of intrinsic connectivity networks. These results support the view that the slow potentials reflect changes in cortical excitability and shed light on neuronal substrates underlying both electrophysiological and behavioral ISFs.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Descanso/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA