RESUMEN
Following soil disturbances, establishing healthy roadside vegetation can reduce surface water runoff, improve soil quality, decrease erosion, and enhance landscape aesthetics. This study explores the use of organic soil amendments (OAs) as alternatives to conventional vegetation growth approaches, aiming to provide optimal compost mixing ratios for poor soils, and clarify guidelines for OAs' use in roadside projects. Three sandy loam soils and one loam soil were chosen for the study. Organic amendments included yard waste (Y), food waste (F), turkey litter and green waste-based (T) composts, and wood-derived biochar (B). Treatment applications targeted specific increases in the organic matter (OM) percentage of the soils. A selection of seven native species (grasses and forbs) in a total of 156 pots (4 control soils + 4 soils x 4 OAs x 3 application rates, all prepared in triplicates) was used for the pot study experiment. A significant correlation between electrical conductivity (soluble salts) in soil-OA blends and corresponding percent green coverage (%GC) was found. High salts from the T compost either delayed or curtailed growth. Notably, 3 out of the 4 soils amended with biochar exhibited rapid vegetation coverage during initial growth stages compared to other soil-OA blends but reduced the nitrogen (N) uptake and leaf area in black-eyed Susan (BES) plants. In contrast, N uptake was higher in the BES plants emerging from composts T, F, and Y compared to biochar. It is recommended to minimize concentrated manure-based (e.g., turkey litter) composts for roadside projects as an OM source, and alternatively, enriching wood-based biochar with nutrients when used as a soil amendment. Within the current study, composts such as F and Y were well-suited to establish healthy and long-lasting vegetation.
Asunto(s)
Suelo , Suelo/química , Nitrógeno/análisis , Compostaje/métodos , Carbón Orgánico/químicaRESUMEN
Disturbed soils, including manufactured topsoils, often lack physical and chemical properties conducive to vegetation establishment. As a result, efforts to stabilize disturbed soils with vegetation are susceptible to failure. Urban organic waste products such as wood mulch, composted leaf and yard waste, and biosolids are widely distributed as organic amendments that enhance sustainability and plant establishment. Correct use can be determined by examining soil properties such as pH; the concentration of soluble salts (SS); and plant available nutrients - particularly N, C and P; as well as root and shoot growth. This research examined the effects of three typical organic amendments on fertility, establishment, and nutrient loss. A manufactured topsoil was used as the base soil for all treatments, including a control unamended soil (CUT), and soil amended with either mulch (MAT), composted leaf and yard waste (LAT), or biosolids (BAT). A 2 % organic matter concentration increase was sought but not achieved due to difficulty in reproducing lab results at a larger scale. Results showed that LAT improved soil fertility, particularly N-P-K concentrations while maintaining a good C:N ratio, pH, and SS concentration. BAT was the most effective at enhancing shoot growth but results suggest that improved growth rates could result in increased maintenance. Additionally, biosolids were an excellent source of nutrients, especially N-P-K and S, but diminished root growth and N leachate losses indicate that N was applied in excess of turfgrass requirements. Therefore, biosolids could be used as fertilizer, subject to recommended rates for turfgrass establishment to prevent poor root growth and waterborne N pollution. To ensure establishment efforts are successful, MAT is not recommended without a supplemental source of soluble N. Altogether, study results and conclusions could inform others seeking to improve specifications for disturbed soil where turfgrass establishment is needed to stabilize soil.
Asunto(s)
Suelo , Suelo/química , Fertilizantes , Nitrógeno/análisis , Nutrientes/análisis , Fósforo/análisis , Compostaje/métodosRESUMEN
Anthropogenic disturbance of soils can disrupt soil structure, diminish fertility, alter soil chemical properties, and cause erosion. Current remediation practices involve amending degraded urban topsoils lacking in organic matter and nutrition with organic amendments (OA) to enhance vegetative growth. However, the impact of OAs on water quality and structural properties at rates that meet common topsoil organic matter specifications need to be studied and understood. This study tested three commonly available OAs: shredded wood mulch, leaf-based compost, and class A Exceptional Quality stabilized sewage sludge (or biosolids) for nutrient (nitrogen and phosphorus) water quality, soil shear strength, and hydraulic properties, through two greenhouse tub studies. Findings showed that nitrogen losses to leachate were greater in the biosolids amended topsoils compared to leaf-compost, mulch amended topsoils, and control treatments. Steady-state mean total nitrogen (N) concentrations from biosolids treatment exceeded typical highway stormwater concentrations by at least 25 times. Soil total N content combined with the carbon:nitrogen ratio were identified to be the governing properties of N leaching in soils. Study soils, irrespective of the type of amendment, reduced the applied (tap) water phosphorus (P) concentration of â¼0.3 mg-P/L throughout the experiment. Contrary to the effects on N leaching, P was successfully retained by the biosolids amendment, due to the presence of greater active iron contents. A breakthrough mechanism for P was observed in leaf compost amended soil, where the effluent concentrations of P continued to increase with each rainfall application, possibly due to an saturation of soil adsorption sites. The addition of OAs also improved the strength and hydraulic properties of soils. The effective interlocking mechanisms between the soil and OA surfaces could provide soil its required strength and stability, particularly on slopes. OAs also improved soil fertility to promote turf growth. Presence of vegetative root zones can further reinforce the soil and control erosion.
Asunto(s)
Compostaje , Contaminantes del Suelo , Biosólidos , Resistencia al Corte , Suelo/química , Fósforo/química , Nutrientes , Contaminantes del Suelo/análisis , Aguas del Alcantarillado/química , NitrógenoRESUMEN
Stormwater from complex land uses is an important contributor of contaminants of concern (COCs) such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), Copper, and Zinc to receiving water bodies. A large portion of these COCs bind to particulate matter in stormwater, which can be removed through filtration by traditional media. However, the remaining dissolved COCs can be significant and require special attention such as engineered treatment measures and media. Biochar is a porous sorbent produced from a variety of organic materials. In the last decade biochar has been gaining attention as a stormwater treatment medium due to low cost compared to activated carbon. However, biochar is not a uniform product and selection of an appropriate biochar for the removal of specific contaminants can be a complex process. Biochars are synthesized from various feedstocks and using different manufacturing approaches, including pyrolysis temperature, impact the biochar properties thus affecting ability to remove stormwater contaminants. The local availability of specific biochar products is another important consideration. An evaluation of proposed stormwater control measure (SCM) media needs to consider the dynamic conditions associated with stormwater and its management, but the passive requirements of the SCM. The media should be able to mitigate flood risks, remove targeted COCs under high flow SCM conditions, and address practical considerations like cost, sourcing, and construction and maintenance. This paper outlines a process for selecting promising candidates for SCM media and evaluating their performance through laboratory tests and field deployment with special attention to unique stormwater considerations.
Asunto(s)
Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Purificación del Agua , Carbón Orgánico , Cobre , Material Particulado , Lluvia , Agua , Abastecimiento de Agua , ZincRESUMEN
Increases in urbanization have led to increased stormwater runoff and mobilization of pollutants from urban watersheds. Discharge of these pollutants often leads to contamination of receiving water bodies. Chemical characterization of urban stormwater is necessary to gain deeper insights into the ecological impacts of urban runoff and to evaluate parameters that influence possible treatment technologies. This study assessed stormwater event mean concentrations and particle size fractions from field studies reported in national/international stormwater quality databases (The National Stormwater Quality and The Best Management Practices databases) and peer-reviewed literature. This characterization of urban stormwater includes statistical evaluation of probability distribution, consideration of dissolved and particulate-bound pollutants and focuses on partitioning and speciation behavior. Solids, nutrients, metals, organic pollutants, and bacterial pathogen indicators were evaluated. A significant fraction of stormwater phosphorus, metals and organic pollutants are particle-bound. Results from the speciation of metals demonstrated that metals are predominantly present as either inner-sphere or electrostatic complexes with dissolved organic matter. This study provides a comprehensive overview of the myriad pollutants found in urban stormwater and provides a starting point for addressing ubiquitous and emerging contaminants. Finally, research needs for further detailed stormwater characterization were identified.