Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 130(1): 112-129, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34816743

RESUMEN

BACKGROUND: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim is to study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. METHODS: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. RESULTS: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (eg, ACTN2 [α-actinin 2], TTN [titin], and MYH10 [non-muscle myosin IIB]) were misspliced. Consequently, MYH6 (muscle myosin II) cannot replace nonmuscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the ABD (actin-binding domain; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. CONCLUSIONS: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


Asunto(s)
Empalme Alternativo , Células Madre Embrionarias Humanas/metabolismo , Desarrollo de Músculos , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinina/genética , Actinina/metabolismo , Diferenciación Celular , Línea Celular , Conectina/genética , Conectina/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Proteínas de Unión al ARN/genética
2.
Cell Mol Neurobiol ; 43(7): 3593-3604, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37289255

RESUMEN

Neuroinflammation is an early event during the pathogenesis of neurodegenerative disorders. Most studies focus on how the factors derived from pathogens or tissue damage activate the inflammation-pyroptosis cell death pathway. It is unclear whether endogenous neurotransmitters could induce inflammatory responses in neurons. Our previous reports have shown that dopamine-induced elevation of intracellular Zn2+ concentration via the D1-like receptor (D1R) is a prerequisite for autophagy and cell death in primary cultured rat embryonic neurons. Here we further examined that this D1R-Zn2+ signaling initiates the transient inflammatory response leading to cell death in cultured cortical neurons. Pretreating the cultured neurons with Zn2+ chelator and inhibitors against inflammation could enhance the cell viability in neurons treated with dopamine and dihydrexidine, an agonist of D1R. Both dopamine and dihydrexidine greatly enhanced inflammasome formation; a Zn2+ chelator, N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine, suppressed this increment. Dopamine and dihydrexidine increased the expression levels of NOD-like receptor pyrin domain-containing protein 3 and enhanced the maturation of caspase-1, gasdermin D, and IL-1ß; these changes were all Zn2+-dependent. Dopamine treatment did not recruit the N-terminal of the gasdermin D to the plasma membrane but enhanced its localization to the autophagosomes. Pretreating the neurons with IL-1ß could increase the viability of neurons challenged with dopamine. These results demonstrate a novel D1R-Zn2+ signaling cascade activating neuroinflammation and cell death. Therefore, maintaining a balance between dopamine homeostasis and inflammatory responses is an important therapeutic target for neurodegeneration. Dopamine elicits transient inflammatory responses in cultured cortical neurons via the D1R-Zn2+ signaling pathway. Dopamine elevates [Zn2+]i to induce the formation of inflammasomes, which activates caspase-1, resulting in the maturation of IL-1ß and gasdermin D (GSDMD). Therefore, the homeostasis of dopamine and Zn2+ are critical therapeutic targets for inflammation-derived neurodegeneration.


Asunto(s)
Dopamina , Enfermedades Neuroinflamatorias , Ratas , Animales , Gasderminas , Inflamasomas/metabolismo , Caspasa 1/metabolismo , Transducción de Señal/fisiología , Inflamación , Neuronas/metabolismo , Quelantes , Zinc/farmacología , Zinc/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-1beta/metabolismo
3.
Microsc Microanal ; 27(2): 420-424, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33487212

RESUMEN

Lysosomes are integration hubs for several signaling pathways, such as autophagy and endocytosis, and also crucial stores of ions, including Zn2+. Lysosomal dysfunction caused by changes in their morphology by fusion and fission processes can result in several pathological disorders. However, the role of Zn2+ in modulating the morphology of lysosomes is unclear. The resolution of conventional epifluorescence microscopy restricts accurate observation of morphological changes of subcellular fluorescence punctum. In this study, we used a modified epifluorescence microscopy to identify the center of a punctum from a series of z-stack images and calculate the morphological changes. We stained primary cultured rat embryonic cortical neurons with FluoZin3, a Zn2+-sensitive fluorescent dye, and Lysotracker, a lysosome-specific marker, to visualize the distribution of Zn2+-enriched vesicles and lysosomes, respectively. Our results revealed that treating neurons with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, a cell-permeable Zn2+ chelator, shrank Zn2+-enriched vesicles and lysosomes by up to 25% in an hour. Pretreating the neurons with YM201636, a blocker of lysosome fission, could suppress this shrinkage. These results demonstrate the usefulness of the modified epifluorescence microscopy for investigating the homeostasis of intracellular organelles and related disorders.


Asunto(s)
Lisosomas , Neuronas , Animales , Autofagia , Células Cultivadas , Ratas , Zinc
4.
Small ; 14(24): e1704439, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29770576

RESUMEN

The Zn2+ stored in the secretory vesicles of glutamatergic neurons is coreleased with glutamate upon stimulation, resulting in the elevation of extracellular Zn2+ concentration (CZn2+ex). This elevation of CZn2+ex regulates the neurotransmission and facilitates the fibrilization of amyloid-ß (Aß). However, the exact CZn2+ex surrounding neurons under (patho)physiological conditions is not clear and the connection between CZn2+ex and the Aß fibrilization remains obscure. Here, a silicon nanowire field-effect transistor (SiNW-FET) with the Zn2+ -sensitive fluorophore, FluoZin-3 (FZ-3), to quantify the CZn2+ex in real time is modified. This FZ-3/SiNW-FET device has a dissociation constant of ≈12 × 10-9 m against Zn2+ . By placing a coverslip seeded with cultured embryonic cortical neurons atop an FZ-3/SiNW-FET, the CZn2+ex elevated to ≈110 × 10-9 m upon stimulation with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Blockers against the AMPA receptor or exocytosis greatly suppress this elevation, indicating that the Zn2+ stored in the synaptic vesicles is the major source responsible for this elevation of CZn2+ex. In addition, a SiNW-FET modified with Aß could bind Zn2+ with a dissociation constant of ≈633 × 10-9 m and respond to the Zn2+ released from AMPA-stimulated neurons. Therefore, the CZn2+ex can reach a level high enough to bind Aß and the Zn2+ homeostasis can be a therapeutic strategy to prevent neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Espacio Extracelular/química , Nanocables/química , Neuronas/metabolismo , Transistores Electrónicos , Zinc/farmacología , Animales , Femenino , Iones , Neuronas/efectos de los fármacos , Neurotransmisores/metabolismo , Ratas Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
5.
Mol Cell Neurosci ; 82: 35-45, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28427888

RESUMEN

Zinc ion (Zn2+), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn2+ concentrations ([Zn2+]i) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn2+]i and the effect of [Zn2+]i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn2+]i. PKA activators and NO generators directly increased [Zn2+]i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn2+]i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Transducción de Señal , Zinc/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Células Cultivadas , Quelantes/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Etilenodiaminas/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
6.
Small ; 12(40): 5524-5529, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27551968

RESUMEN

Silicon nanowire field-effect transistors modified with specific aptamers can directly detect the minute dopamine and neuropeptide Y released from cells. The binding of these molecules to the aptamers results in a conductance change of the transistor biosensor and illustrates the differential releasing mechanisms of these molecules stored in various vesicle pools.


Asunto(s)
Aptámeros de Péptidos/química , Dopamina/análisis , Histamina/farmacología , Nanocables/química , Neuropéptido Y/análisis , Transistores Electrónicos , Animales , Células PC12 , Ratas , Silicio/química
7.
Proc Natl Acad Sci U S A ; 109(2): E93-102, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22160714

RESUMEN

Voltage-dependent gating of ion channels is essential for electrical signaling in excitable cells, but the structural basis for voltage sensor function is unknown. We constructed high-resolution structural models of resting, intermediate, and activated states of the voltage-sensing domain of the bacterial sodium channel NaChBac using the Rosetta modeling method, crystal structures of related channels, and experimental data showing state-dependent interactions between the gating charge-carrying arginines in the S4 segment and negatively charged residues in neighboring transmembrane segments. The resulting structural models illustrate a network of ionic and hydrogen-bonding interactions that are made sequentially by the gating charges as they move out under the influence of the electric field. The S4 segment slides 6-8 Å outward through a narrow groove formed by the S1, S2, and S3 segments, rotates ∼30°, and tilts sideways at a pivot point formed by a highly conserved hydrophobic region near the middle of the voltage sensor. The S4 segment has a 3(10)-helical conformation in the narrow inner gating pore, which allows linear movement of the gating charges across the inner one-half of the membrane. Conformational changes of the intracellular one-half of S4 during activation are rigidly coupled to lateral movement of the S4-S5 linker, which could induce movement of the S5 and S6 segments and open the intracellular gate of the pore. We confirmed the validity of these structural models by comparing with a high-resolution structure of a NaChBac homolog and showing predicted molecular interactions of hydrophobic residues in the S4 segment in disulfide-locking studies.


Asunto(s)
Proteínas Bacterianas/química , Activación del Canal Iónico/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína , Canales de Sodio/química , Secuencia de Aminoácidos , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cristalografía , Campos Electromagnéticos , Electrofisiología , Enlace de Hidrógeno , Activación del Canal Iónico/genética , Datos de Secuencia Molecular , Alineación de Secuencia , Canales de Sodio/genética , Canales de Sodio/metabolismo
8.
J Am Chem Soc ; 135(43): 16034-7, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24125072

RESUMEN

Dopamine (DA) is an important neurotransmitter that is involved in neuronal signal transduction and several critical illnesses. However, the concentration of DA is extremely low in patients and is difficult to detect using existing electrochemical biosensors with detection limits typically around nanomolar levels (∼10(-9) M). Here, we developed a nanoelectronic device as a biosensor for ultrasensitive and selective DA detection by modifying DNA-aptamers on a multiple-parallel-connected (MPC) silicon nanowire field-effect transistor (referred to as MPC aptamer/SiNW-FET). Compared with conventional electrochemical methods, the MPC aptamer/SiNW-FET has been demonstrated to improve the limit of DA detection to <10(-11) M and to possess a detection specificity that is able to distinguish DA from other chemical analogues, such as ascorbic acid, catechol, phenethylamine, tyrosine, epinephrine, and norepinephrine. This MPC aptamer/SiNW-FET was also applied to monitor DA release under hypoxic stimulation from living PC12 cells. The real-time recording of the exocytotic DA induced by hypoxia reveals that the increase in intracellular Ca(2+) that is required to trigger DA secretion is dominated by an extracellular Ca(2+) influx, rather than the release of intracellular Ca(2+) stores.


Asunto(s)
Técnicas Biosensibles , Dopamina/química , Dopamina/metabolismo , Nanocables , Animales , Aptámeros de Nucleótidos , ADN/química , Electroquímica , Diseño de Equipo , Hipoxia/metabolismo , Microcomputadores , Células PC12 , Ratas , Transistores Electrónicos
9.
Cell Biol Toxicol ; 29(6): 415-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24077806

RESUMEN

Dopamine oxidation and divalent cations have been reported to induce neuronal cell death. Although autophagy is involved in neuronal cell death, it has also been suggested to facilitate cell survival. We sought to investigate the role of autophagy in PC12 cells and cultured neurons treated with dopamine and Zn2+. Cells expressing EGFP-LC3 were treated with high concentrations of dopamine and Zn2+, and the formation of EGFP-LC3 fluorescence aggregates was monitored. Our results showed a significant increase in the number of fluorescent puncta in the cytosol of PC12 cells treated with these chemicals. These treatments enhanced LC3 lipidation levels in PC12 cells. Decreasing the ATG7 protein level using specific small interference RNA (siRNA) and pretreating with phosphatidylinositol 3-phosphate kinase blockers, wortmannin and LY294002, inhibited puncta formation. Dopamine or Zn2+ treatment significantly elevated the intracellular Zn2+ concentration ([Zn2+] i ); however, inhibiting the [Zn2+] i elevation in dopamine-treated cells suppressed the puncta formation. LY294002 or siRNA-directed members of the autophagy pathway increased the fraction of phosphatidylserine present on the outer membrane leaflet in PC12 cells treated with dopamine or Zn2+, suggesting an increase in apoptosis. Primary embryonic midbrain neurons expressing EGFP-LC3 also displayed a significant increase in the number of fluorescent aggregates in cells upon treatment with dopamine or Zn2+. Dopamine or Zn2+ treatment significantly elevated the [Zn2+] i in neurons and caused neuronal death. Our results indicate that treating cells with dopamine and Zn2+ results in the activation of the autophagy pathway in an effort to enhance cell survival.


Asunto(s)
Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cromonas/farmacología , Dopamina/farmacología , Proteínas Fluorescentes Verdes , Morfolinas/farmacología , Células PC12 , Fagosomas/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , ARN Interferente Pequeño , Ratas , Transducción de Señal/efectos de los fármacos , Zinc/farmacología
10.
Proc Natl Acad Sci U S A ; 107(3): 1047-52, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080536

RESUMEN

In this study, we describe a highly sensitive and reusable silicon nanowire field-effect transistor for the detection of protein-protein interactions. This reusable device was made possible by the reversible association of glutathione S-transferase-tagged calmodulin with a glutathione modified transistor. The calmodulin-modified transistor exhibited selective electrical responses to Ca2+ (> or = 1 microM) and purified cardiac troponin I (approximately 7 nM); the change in conductivity displayed a linear dependence on the concentration of troponin I in a range from 10 nM to 1 microM. These results are consistent with the previously reported concentration range in which the dissociation constant for the troponin I-calmodulin complex was determined. The minimum concentration of Ca2+ required to activate calmodulin was determined to be 1 microM. We have also successfully demonstrated that the N-type Ca2+ channels, expressed by cultured 293T cells, can be recognized specifically by the calmodulin-modified nanowire transistor. This sensitive nanowire transistor can serve as a high-throughput biosensor and can also substitute for immunoprecipitation methods used in the identification of interacting proteins.


Asunto(s)
Calmodulina/metabolismo , Nanocables , Proteínas/metabolismo , Unión Proteica
11.
Front Aging Neurosci ; 14: 848380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250550

RESUMEN

OBJECTIVE: Cortical electrical stimulation (CES) can modulate cortical excitability through a plasticity-like mechanism and is considered to have therapeutic potentials in Parkinson's disease (PD). However, the precise therapeutic value of such approach for PD remains unclear. Accordingly, we adopted a PD rat model to determine the therapeutic effects of CES. The current study was thus designed to identify the therapeutic potential of CES in PD rats. METHODS: A hemiparkinsonian rat model, in which lesions were induced using unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, was applied to identify the therapeutic effects of long-term (4-week) CES with intermittent theta-burst stimulation (iTBS) protocol (starting 24 h after PD lesion observation, 1 session/day, 5 days/week) on motor function and neuroprotection. After the CES intervention, detailed functional behavioral tests including gait analysis, akinesia, open-field locomotor activity, apomorphine-induced rotation as well as degeneration level of dopaminergic neurons were performed weekly up to postlesion week 4. RESULTS: After the CES treatment, we found that the 4-week CES intervention ameliorated the motor deficits in gait pattern, akinesia, locomotor activity, and apomorphine-induced rotation. Immunohistochemistry and tyrosine hydroxylase staining analysis demonstrated that the number of dopamine neurons was significantly greater in the CES intervention group than in the sham treatment group. CONCLUSION: This study suggests that early and long-term CES intervention could reduce the aggravation of motor dysfunction and exert neuroprotective effects in a rat model of PD. Further, this preclinical model of CES may increase the scope for the potential use of CES and serve as a link between animal and PD human studies to further identify the therapeutic mechanism of CES for PD or other neurological disorders.

12.
J Mol Endocrinol ; 67(4): 203-215, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34463641

RESUMEN

Somatic mutation in the KCNJ5 gene is a common driver of autonomous aldosterone overproduction in aldosterone-producing adenomas (APA). KCNJ5 mutations contribute to a loss of potassium selectivity, and an inward Na+ current could be detected in cells transfected with mutated KCNJ5. Among 223 unilateral primary aldosteronism (uPA) individuals with a KCNJ5 mutation, we identified 6 adenomas with a KCNJ5 p.Gly387Arg (G387R) mutation, previously unreported in uPA patients. The six uPA patients harboring mutant KCNJ5-G387R were older, had a longer hypertensive history, and had milder elevated preoperative plasma aldosterone levels than those APA patients with more frequently detected KCNJ5 mutations. CYP11B2 immunohistochemical staining was only positive in three adenomas, while the other three had co-existing multiple aldosterone-producing micronodules. The bioinformatics analysis predicted that function of the KCNJ5-G387R mutant channel could be pathological. However, the electrophysiological experiment demonstrated that transfected G387R mutant cells did not have an aberrantly stimulated ion current, with lower CYP11B2 synthesis and aldosterone production, when compared to that of the more frequently detected mutant KCNJ5-L168R transfected cells. In conclusion, mutant KCNJ5-G387R is not a functional KCNJ5 mutation in unilateral PA. Compared with other KCNJ5 mutations, the observed mildly elevated aldosterone expression actually hindered the clinical identification of clinical unilateral PA. The KCNJ5-G387R mutation needs to be distinguished from functional KCNJ5 mutations during genomic analysis in APA evaluation because of its functional silence.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Mutación , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Anciano , Secuencia de Aminoácidos , Biomarcadores , Línea Celular , Análisis Mutacional de ADN , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/terapia , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Relación Estructura-Actividad
13.
Front Neural Circuits ; 15: 693073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194304

RESUMEN

Objective: Individuals with different severities of traumatic brain injury (TBI) often suffer long-lasting motor, sensory, neurological, or cognitive disturbances. To date, no neuromodulation-based therapies have been used to manage the functional deficits associated with TBI. Cortical electrical stimulation (CES) has been increasingly developed for modulating brain plasticity and is considered to have therapeutic potential in TBI. However, the therapeutic value of such a technique for TBI is still unclear. Accordingly, an animal model of this disease would be helpful for mechanistic insight into using CES as a novel treatment approach in TBI. The current study aims to apply a novel CES scheme with a theta-burst stimulation (TBS) protocol to identify the therapeutic potential of CES in a weight drop-induced rat model of TBI. Methods: TBI rats were divided into the sham CES treatment group and CES treatment group. Following early and long-term CES intervention (starting 24 h after TBI, 1 session/day, 5 days/week) in awake TBI animals for a total of 4 weeks, the effects of CES on the modified neurological severity score (mNSS), sensorimotor and cognitive behaviors and neuroinflammatory changes were identified. Results: We found that the 4-week CES intervention significantly alleviated the TBI-induced neurological, sensorimotor, and cognitive deficits in locomotor activity, sensory and recognition memory. Immunohistochemically, we found that CES mitigated the glial fibrillary acidic protein (GFAP) activation in the hippocampus. Conclusion: These findings suggest that CES has significant benefits in alleviating TBI-related symptoms and represents a promising treatment for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos del Conocimiento , Disfunción Cognitiva , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Cognición , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Modelos Animales de Enfermedad , Estimulación Eléctrica , Ratas
14.
Biomedicines ; 9(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34440230

RESUMEN

Mutated channelopathy could play important roles in the pathogenesis of aldosterone-producing adenoma (APA). In this study, we identified a somatic mutation, KCNJ5 157-159delITE, and reported its immunohistological, pathophysiological and pharmacological characteristics. We conducted patch-clamp experiments on HEK293T cells and experiments on expression of aldosterone synthase (CYP11B2) and aldosterone secretion in HAC15 cells to evaluate electrophysiological and functional properties of this mutated KCNJ5. Immunohistochemistry was conducted to identify expressions of several steroidogenic enzymes. Macrolide antibiotics and a calcium channel blocker were administrated to evaluate the functional attenuation of mutated KCNJ5 channel in transfected HAC15 cells. The interaction between macrolides and KCNJ5 protein was evaluated via molecular docking and molecular dynamics simulation analysis. The immunohistochemistry analysis showed strong CYP11B2 immunoreactivity in the APA harboring KCNJ5 157-159delITE mutation. Whole-cell patch-clamp data revealed that mutated KCNJ5 157-159delITE channel exhibited loss of potassium ion selectivity. The mutant-transfected HAC15 cells increased the expression of CYP11B2 and aldosterone secretion, which was partially suppressed by clarithromycin and nifedipine but not roxithromycin treatment. The docking analysis and molecular dynamics simulation disclosed that roxithromycin had strong interaction with KCNJ5 L168R mutant channel but not with this KCNJ5 157-159delITE mutant channel. We showed comprehensive evaluations of the KCNJ5 157-159delITE mutation which revealed that it disrupted potassium channel selectivity and aggravated autonomous aldosterone production. We further demonstrated that macrolide antibiotics, roxithromycin, could not interfere the aberrant electrophysiological properties and gain-of-function aldosterone secretion induced by KCNJ5 157-159delITE mutation.

15.
ACS Appl Bio Mater ; 4(9): 6865-6873, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006986

RESUMEN

Recording ion fluctuations surrounding biological cells with a nanoelectronic device offers seamless integration of nanotechnology into living organisms and is essential for understanding cellular activities. The concentration of potassium ion in the extracellular fluid (CK+ex) is a critical determinant of cell membrane potential and must be maintained within an appropriate range. Alteration in CK+ex can affect neuronal excitability, induce heart arrhythmias, and even trigger seizure-like reactions in the brain. Therefore, monitoring local fluctuations in real time provides an early diagnosis of the occurrence of the K+-induced pathophysiological responses. Here, we modified the surface of a silicon nanowire field-effect transistor (SiNW-FET) with K+-specific DNA-aptamers (AptK+) to monitor the real-time variations of CK+ex in primary cultured rat embryonic cortical neurons or human embryonic stem cell-derived cardiomyocytes. The binding affinity of AptK+ to K+, determined by measuring the dissociation constant of the AptK+-K+ complex (Kd = 10.1 ± 0.9 mM), is at least 38-fold higher than other ions (e.g., Na+, Ca2+, and Mg2+). By placing cultured cortical neurons over an AptK+/SiNW-FET device, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation raised the CK+ex dose-dependently to 16 mM when AMPA concentration was >10 µM; this elevation could be significantly suppressed by an AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. Likewise, the stimulation of isoproterenol to cardiomyocytes raised the CK+ex to 6-8 mM, with a concomitant increase in the beating rate. This study utilizing a robust nanobiosensor to detect real-time ion fluctuations surrounding excitable cells underlies the importance of ion homeostasis and offers the feasibility of developing an implant device for real-time monitoring.


Asunto(s)
Nanocables , Animales , Iones , Nanocables/química , Potasio/metabolismo , Ratas , Silicio/química , Transistores Electrónicos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
16.
Proteomics ; 10(13): 2429-43, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20405472

RESUMEN

Although accelerated atherosclerosis and arteriosclerosis are the main causes of cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients, the molecular pathogenesis remains largely obscure. Our study of the aortic function in a typical CKD model of subtotal nephrectomy (SNX) rats demonstrated phenotypes that resemble CKD patients with aortic stiffness. The 2-DE analysis of rat aortas followed by MS identified 29 up-regulated and 53 down-regulated proteins in SNX rats. Further Western blot and immunohistochemistry analyses validated the decreased HSP27 and increased milk fat globule epidermal growth factor-8 (MFG-E8) in SNX rats. Functional classification of differential protein profiles using KOGnitor revealed that the two major categories involved in aortic stiffness are posttranslational modification, protein turnover, chaperones (23%) and cytoskeleton (21%). Ingenuity Pathway Analysis highlighted cellular assembly and organization, and cardiovascular system development and function as the two most relevant pathways. Among the identified proteins, the clinical significance of the secreted protein MFG-E8 was confirmed in 50 CKD patients, showing that increased serum MFG-E8 level is positively related to aortic stiffness and renal function impairment. Drug interventions with an inhibitor of the angiotensin converting enzyme, enalapril, in SNX rats improved aortic stiffness and decreased MFG-E8 depositions. Together, our studies provide a repertoire of potential biomarkers related to the aortic stiffness in CKD.


Asunto(s)
Aorta/química , Nefrectomía , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antígenos de Superficie , Aorta/efectos de los fármacos , Modelos Animales de Enfermedad , Enalapril/farmacología , Proteínas de Choque Térmico HSP27/análisis , Humanos , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Masculino , Proteínas de la Leche/análisis , Proteómica , Ratas , Ratas Sprague-Dawley
17.
PLoS One ; 15(9): e0232729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915786

RESUMEN

Zinc ions (Zn2+) are important messenger molecules involved in various physiological functions. To maintain the homeostasis of cytosolic Zn2+ concentration ([Zn2+]c), Zrt/Irt-related proteins (ZIPs) and Zn2+ transporters (ZnTs) are the two families of proteins responsible for decreasing and increasing the [Zn2+]c, respectively, by fluxing Zn2+ across the membranes of the cell and intracellular compartments in opposite directions. Most studies focus on the cytotoxicity incurred by a high concentration of [Zn2+]c and less investigate the [Zn2+]c at physiological levels. Zinc oxide-nanoparticle (ZnO-NP) is blood brain barrier-permeable and elevates the [Zn2+]c to different levels according to the concentrations of ZnO-NP applied. In this study, we mildly elevated the [Zn2+]c by ZnO-NP at concentrations below 1 µg/ml, which had little cytotoxicity, in cultured human neuroblastoma SH-SY5Y cells and characterized the importance of Zn2+ transporters in 6-hydroxy dopamine (6-OHDA)-induced cell death. The results show that ZnO-NP at low concentrations elevated the [Zn2+]c transiently in 6 hr, then declined gradually to a basal level in 24 hr. Knocking down the expression levels of ZnT1 (located mostly at the plasma membrane) and ZIP8 (present in endosomes and lysosomes) increased and decreased the ZnO-NP-induced elevation of [Zn2+]c, respectively. ZnO-NP treatment reduced the basal levels of reactive oxygen species and Bax/Bcl-2 mRNA ratios; in addition, ZnO-NP decreased the 6-OHDA-induced ROS production, p53 expression, and cell death. These results show that ZnO-NP-induced mild elevation in [Zn2+]c activates beneficial effects in reducing the 6-OHDA-induced cytotoxic effects. Therefore, brain-delivery of ZnO-NP can be regarded as a potential therapy for neurodegenerative diseases.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Nanopartículas del Metal , Óxido de Zinc/farmacología , Zinc/metabolismo , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Expresión Génica/efectos de los fármacos , Humanos , Oxidopamina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Am J Physiol Cell Physiol ; 297(2): C397-406, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19515902

RESUMEN

Vesicle recycling is vital for maintaining membrane homeostasis and neurotransmitter release. Multiple pathways for retrieving vesicles fused to the plasma membrane have been reported in neuroendocrine cells. Dynasore, a dynamin GTPase inhibitor, has been shown to specifically inhibit endocytosis and vesicle recycling in nerve terminals. To characterize its effects in modulating vesicle recycling and repetitive exocytosis, changes in the whole cell membrane capacitance of bovine chromaffin cells were recorded in the perforated-patch configuration. Constitutive endocytosis was blocked by dynasore treatment, as shown by an increase in membrane capacitance. The membrane capacitance was increased during strong depolarizations and declined within 30 s to a value lower than the prestimulus level. The amplitude, but not the time constant, of the rapid exponential decay was significantly decreased by dynasore treatment. Although the maximal increase in capacitance induced by stimulation was significantly increased by dynasore treatment, the intercepts at time 0 of the curve fitted to the decay phase were all approximately 110% of the membrane capacitance before stimulation, regardless of the dynasore concentration used. Membrane depolarization caused clathrin aggregation and F-actin continuity disruption at the cell boundary, whereas dynasore treatment induced clathrin aggregation without affecting F-actin continuity. The number of invagination pits on the surface of the plasma membrane determined using atomic force microscopy was increased and the pore was wider in dynasore-treated cells. Our data indicate that dynamin-mediated endocytosis is the main pathway responsible for rapid compensatory endocytosis.


Asunto(s)
Células Cromafines , Endocitosis/efectos de los fármacos , Hidrazonas/farmacología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Bovinos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cromafines/efectos de los fármacos , Células Cromafines/fisiología , Clatrina/metabolismo , Capacidad Eléctrica , Exocitosis/fisiología , Colorantes Fluorescentes/metabolismo , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp , Potasio/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Vesículas Transportadoras/metabolismo
19.
Biochem Biophys Res Commun ; 388(3): 549-53, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19682431

RESUMEN

Calneuron I (CalnI) is a calmodulin-like protein that contains two functional EF-hand motifs at the N-terminal and a hydrophobic segment at the C-terminal. CalnI was cloned from the adult rat cortex and fused with GFP at its N-terminal. When expressed in bovine chromaffin cells, wild-type CalnI was localized at the plasma membrane. However, a mutant that lacked the hydrophobic segment was localized in the cytosol and nucleus, while a Ca(2+)-binding-deficient mutant was found in the cytosol and at the plasma membrane. Evaluation using the whole-cell patch-clamp technique revealed that Ca(2+) currents were inhibited by both wild-type CalnI and the Ca(2+)-binding-deficient mutant. When the bovine N-type Ca(2+) channel was expressed in 293T cells, Ca(2+) currents were mostly inhibited by co-expression of CalnI, but not by the mutant without the hydrophobic tail. These results suggest that CalnI attenuates Ca(2+) channel activity and that its subcellular localization is important for this effect.


Asunto(s)
Encéfalo/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Cromafines/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Bovinos , Línea Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Ratas
20.
Clin Cancer Res ; 14(19): 6237-45, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829503

RESUMEN

PURPOSE: Neuroblastoma (NB) is a heterogeneous neoplasm. Detailed biological discrimination is critical for the effective treatment of this disease. Because the tumor behavior of NB is closely associated with the histologic state of differentiation, we thus aimed to identify novel differentiation-associated markers of NB with prognostic implication. EXPERIMENTAL DESIGN: A human NB cell line SH-SY5Y was used as a model system to explore potential biomarkers for the differentiation of NB by proteomic analyses. Seventy-two NB tumor tissues were subsequently investigated by immunohistochemistry to validate the correlations between the expression of a novel prognostic marker, various clinicopathologic and biological factors, and patient survival. RESULTS: Using two-dimensional differential gel electrophoresis, we found a total of 24 spots of proteins in SH-SY5Y cells whose expression was enhanced following differentiation. Glucose-regulated protein 75 (GRP75) was unambiguously identified as one of the five proteins that were dramatically up-regulated following differentiation. Immunohistochemical analyses of 72 NB tumor tissues further revealed that positive GRP75 immunostaining is strongly correlated with differentiated histologies (P < 0.001), mass-screened tumors (P = 0.016), and early clinical stages (P < 0.001) but inversely correlated with MYCN amplification (P = 0.010). Univariate and multivariate survival analyses showed that GRP75 expression is an independent favorable prognostic factor. CONCLUSIONS: The present findings clearly showed that our proteomics-based novel experimental paradigm could be a powerful tool to uncover novel biomarkers associated with the differentiation of NB. Our data also substantiate an essential role of GRP75 in the differentiation of NB.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Neuroblastoma/metabolismo , Proteómica/métodos , Diferenciación Celular , Línea Celular Tumoral , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Neuroblastoma/terapia , Pronóstico , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA