Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(13): 5317-5326, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36952586

RESUMEN

Metal oxides play a critical role in the abiotic transformation of iodine species in natural environments. In this study, we investigated iodide oxidation by manganese dioxides (ß-MnO2, γ-MnO2, and δ-MnO2) in frozen and aqueous solutions. The heterogeneous reaction produced reactive iodine (RI) in the frozen phase, and the subsequent thawing of the frozen sample induced the gradual transformation of in situ-formed RI to iodate or iodide, depending on the types of manganese dioxides. The freezing-enhanced production of RI was observed over the pH range of 5.0-9.0, but it decreased with increasing pH. Fulvic acid (FA) can be iodinated by I-/MnO2 in aqueous and frozen solutions. About 0.8-8.4% of iodide was transformed to organoiodine compounds (OICs) at pH 6.0-7.8 in aqueous solution, while higher yields (10.4-17.8%) of OICs were obtained in frozen solution. Most OICs generated in the frozen phase contained one iodine atom and were lignin-like compounds according to Fourier transform ion cyclotron resonance/mass spectrometry analysis. This study uncovers a previously unrecognized production pathway of OICs under neutral conditions in frozen environments.


Asunto(s)
Yoduros , Yodo , Yoduros/química , Óxidos/química , Compuestos de Manganeso/química , Manganeso , Congelación , Oxidación-Reducción , Yodo/química , Agua/química
2.
Environ Sci Technol ; 53(7): 3697-3706, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30816704

RESUMEN

Photocatalytic fuel cells (PFCs) have proven to be effective for generating electricity and degrading pollutants with a goal to resolve environmental and energy problems. However, the degradation of persistent organic pollutants (POPs), such as perfluorooctanoic acid (PFOA), remains challenging. In the present work, a porous coral-like WO3/W (PCW) photoelectrode with a well-designed energy band structure was used for the photoelectrocatalytic degradation of POPs and the simultaneous generation of electricity. The as-constructed bionic porous coral-like nanostructure greatly improved the light-harvesting capacity of the PCW photoelectrode. A maximum photocurrent density (0.31 mA/cm2) under visible light (λ > 420 nm) irradiation and a high incident photon conversion efficiency (IPCE) value (5.72% at 420 nm) were achieved. Because of the unique porous coral-like structure, the suitable energy band position, and the strong oxidation ability, this PCW photoelectrode-based PFC system exhibited a strong ability for simultaneous photoelectrocatalytic degradation of PFOA and electricity generation under visible-light irradiation, with a power output of 0.0013 mV/cm2 using PFOA as the fuel. This work provides a promising way to construct a reliable PFC using highly toxic POPs to generate electricity.


Asunto(s)
Antozoos , Animales , Electricidad , Electrodos , Luz , Porosidad
3.
Environ Sci Technol ; 52(14): 7842-7848, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29925233

RESUMEN

The introduction of a piezoelectric field has been proven a promising method to enhance photocatalytic activity by preventing photoelectron-hole recombination. However, the formation of a piezoelectric field requires additional mechanical force or high-frequency ultrasonic baths, which limits its potential application on industrial scale. Therefore, it is of great practical significance to design the catalyst that can harvest the discrete energy such as the fluid mechanical energy to form the electric field. Herein, PZT/TiO2 catalyst with a core-shell configuration was prepared by a simple coating method. By collecting the mechanical energy of water, an internal piezoelectric field was induced. Under 800 rpm stirring, transient photocurrent measured on PZT/TiO2 electrode is about 1.7 times higher than that of 400 rpm. Correspondingly, the photocatalytic degradation rate and mineralization efficiency of RhB, BPA, phenol, p-chlorophenol much improved, showing the promoting effect of piezoelectric field generated directly from harvesting the discrete fluid mechanical energy.


Asunto(s)
Fenol , Titanio , Catálisis
4.
Angew Chem Int Ed Engl ; 57(31): 9864-9869, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29898244

RESUMEN

Recently, the emergence of photoactive metal-organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible-light-driven hydrogen evolution. Herein, a highly photoactive visible-light-driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent-assisted ligand-exchange method. Accordingly, a first methylthio-functionalized porous MOF decorated with Pt co-catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 µmol g-1 h-1 , which even is one order of magnitude higher than that of the state-of-the-art Pt/MOF photocatalyst derived from aminoterephthalate.

5.
J Environ Sci (China) ; 60: 108-113, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29031439

RESUMEN

A solar-light double illumination photoelectrocatalytic cell (SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II (PS-II, an efficient light-driven water-oxidized enzyme from nature) and utilized in a photoanode solution. The proposed SLPEC system was composed of Cu foam as the photoanode and p-Si nanowires (Si-NW) as the photocathode. Under solar irradiation, it exhibited a super-photoelectrocatalytic performance for CO2 conversion to methanol, with a high evolution rate (41.94mmol/hr), owing to fast electron transfer from PS-II to Cu foam. Electrons were subsequently trapped by Si-NW through an external circuit via bias voltage (0.5V), and a suitable conduction band potential of Si (-0.6eV) allowed CO2 to be easily reduced to CH3OH at the photocathode. The constructed Z-scheme between Cu foam and Si-NW can allow the SLDIPEC system to reduce CO2 (8.03mmol/hr) in the absence of bias voltage. This approach makes full use of the energy band mismatch of the photoanode and photocathode to design a highly efficient device for solving environmental issues and producing clean energy.


Asunto(s)
Dióxido de Carbono/química , Cobre/química , Metanol/química , Nanocables/química , Procesos Fotoquímicos , Silicio/química , Oxidación-Reducción , Complejo de Proteína del Fotosistema II , Energía Solar
6.
Nat Commun ; 10(1): 1570, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952853

RESUMEN

Photosynthesis occurs through the synergistic effects of the non-ncontinuously distributed components in the chloroplast. Inspired by nature, we mimic chloroplast and develop a generic approach to synthesize non-continuously distributed semiconductors threaded by carbon nanotubes. In the synthesis, carbon nanotubes serve as microwave antennas to produce local super-hot dots on the surface, which might induce and accelerate various organic/inorganic semiconductors assembly. With the unique nanoscale designed bionic architecture, a chloroplast structured photocatalyst with 3-dimentional dual electron transfer pathways facilitate enhanced photocatalytic performance. The as-synthesized carbon nanotubes-titanium oxide achieves a record-breaking efficiency of 86% for nitric oxide treatment under ultraviolet light irradiation. As a general strategy, a wide variety of carbon nanotubes threaded chloroplast structured nanomaterials can be synthesized and these nanomaterials could find applications in energy chemistry, environmental science and human health.

7.
Nanoscale ; 8(46): 19343-19351, 2016 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-27841893

RESUMEN

Constructing a porous conductive framework represents a promising strategy for designing high-performance anodes for Li-ion batteries. Here, porous CuO nanotubes/graphene with hierarchical architectures were fabricated by simple annealing of copper nanowires/graphene hybrids synthesized by a microwave-assisted process. In these nanoarchitectures, the embedded porous CuO nanotubes can prevent restacking of the graphene sheets, whereas graphene can increase the electrical conductivity of CuO. Moreover, these two components constitute a sandwich-like interlaced framework that favors ion diffusion, as well as promoting better electron transport. As a result, the as-prepared nanohybrid exhibits a high specific capacity of 725 mA h g-1 and a capacity retention of ∼81% after 250 cycles, as well as outstanding rate performance in comparison to those of bare CuO or a CuO-CNT (carbon nanotubes) hybrid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA