Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Org Chem ; 89(8): 5480-5484, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38591934

RESUMEN

Amine-substituted [s]-triazines display hindered rotation around the triazine-N bond. While this barrier, ΔG‡, has been measured to be between 15.1 and 17.7 kcal/mol for neutral triazines, the impacts that solvent and protonation state have not been addressed. Using a dimethylamine substituent as a reporter, ΔG‡ was measured to be 17.5-19.3 kcal/mol upon protonation across a range of solvents (D2O, DMSO-d6, MeCN-d3, MeOD-d4, tetrahydrofuran-d8, trifluoroethanol-d3). Furthermore, ΔG‡ increases as the solvent dielectric decreases (p < 0.01). This trend is consistent with the role that solvent plays in stabilizing the increased charge density on the triazine ring resulting from a loss of conjugation with the dimethylamine substituent. Across these solvents, ΔG‡ for the neutral molecule is smaller by ∼2-3 kcal/mol, ranging from 15.3-16.1 kcal/mol. In pyridine, ΔG‡ does not correlate with the solvent dielectric for the "protonated" model. The lower barrier is attributed to competitive protonation: the pKa of the protonated triazine (∼6) is similar to that of protonated pyridine-d5 (5.8). As additional acid is added, ΔG‡ increases. Adding additional acid to the protonated model in D2O or DMSO-d6 does not significantly affect ΔG‡.

2.
Chemistry ; 29(44): e202300987, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37229593

RESUMEN

Hinge motion is observed in macrocyclic, mortise-type molecular hinges using variable temperature NMR spectroscopy. The data is consistent with dynamic hinging from a folded-to-extended-to-folded enantiomeric state. Crystallographic and solution structures of the folded states are reported. Chemical shift predictions derived from crystallographic data corroborate fully revolute hinge motion. The rate of hinging is affected by steric congestion at the hinge axis. A macrocycle containing glycine, 1, hinges faster than one comprising aminoisobutyric acid, 2. The free energies of activation, ΔG≠ , for 1 and 2 were determined to be 13.3±0.3 kcal/mol and 16.3±0.3 kcal/mol, respectively. This barrier is largely independent of solvent across those surveyed (CD3 OD, CD3 CN, DMSO-d6 , pyridine-d5 , D2 O). Experiment and computation predict energy barriers that are consistent with disruption of an intramolecular network of hydrogen bonds. DFT calculations reveal a pathway for hinge motion.

3.
J Org Chem ; 88(5): 2692-2702, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780253

RESUMEN

Experiment and computation are used to develop a model to rapidly predict solution structures of macrocycles sharing the same Murcko framework. These 24-atom triazine macrocycles result from the quantitative dimerization of identical monomers presenting a hydrazine group and an acetal tethered to an amino acid linker. Monomers comprising glycine and the ß-branched amino acids threonine, valine, and isoleucine yield macrocycles G-G, T-T, V-V, and I-I, respectively. Elements common to all members of the framework include the efficiency of macrocyclization (quantitative), the solution- and solid-state structures (folded), the site of protonation (opposite the auxiliary dimethylamine group), the geometry of the hydrazone (E), the C2 symmetry of the subunits (conserved), and the rotamer state adopted. In aggregate, the data reveal metrics predictive of the three-dimensional solution structure that derive from the fingerprint region of the 1D 1H spectrum and a network of rOes from a single resonance. The metrics also afford delineation of more nuanced structural features that allow subpopulations to be identified among the members of the framework. Well-tempered metadynamics provides free energy surfaces and population distributions of these macrocycles. The areas of the free energy surface decrease with increasing steric bulk (G-G > V-V ∼ T-T > I-I). In addition, the surfaces are increasingly isoenergetic with decreasing steric bulk (G-G > V-V ∼ T-T > I-I).


Asunto(s)
Aminoácidos , Valina , Conformación Molecular , Isoleucina , Treonina
4.
Angew Chem Int Ed Engl ; 61(3): e202114071, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34780112

RESUMEN

Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g-1 h-1 (turnover frequency (TOF)=227 h-1 ), which is much higher than that of PdTCPP⊂PCN-415(NH2 ) (0.21 mmol g-1 h-1 ) and TpPa (6.51 mmol g-1 h-1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.

5.
Virus Genes ; 56(1): 58-66, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31802380

RESUMEN

Canine distemper virus (CDV) causes a highly contagious disease in a wide range of carnivores. The hemagglutinin (H) protein of viruses shows the highest variability and plays an important role in modulation of viral antigenicity, virulence, and receptor recognition. Since 2012, canine distemper (CD) outbreaks in fur-bearing animals (minks, foxes, raccoon dogs) caused by CDV variants with I542N and Y549H substitutions in the H protein have been frequently reported in China. To characterize the molecular evolutionary dynamics and epidemiological dynamics of CDV, 235 H gene sequences of CDV wild-type strains collected from 22 countries between 1975 and 2015, including 44 strains predominant in fur-bearing animals in China, were analyzed. The phylogenetic relationships and evolutionary rates of the CDV strains were determined by Bayesian phylogenetics. The CDV strains clustered into distinct geographic genotypes, irrespective of the species of isolation. All the variant strains formed a distinct monophyletic cluster and belonged to the F sub-genotype within the Asia-1 genotype-currently the predominant sub-genotype in fur-bearing animals in China. Evolutionary analysis suggested that the variant strains originated in 2006. Furthermore, the selection pressure analysis revealed that the Y549H substitution was under positive selection pressure for adaptation toward the fur-bearing animals. The residue at position 549 also showed structural interaction with the V domain of the mink signaling lymphocyte-activation molecule (SLAM) receptor based on the homology modeling of the H-SLAM complex. Our results suggested that the Y549H substitution contributed to the molecular adaptation of CDV variants in the fur-bearing animals during the viral evolutionary phase in China.


Asunto(s)
Sustitución de Aminoácidos , Virus del Moquillo Canino/genética , Moquillo/virología , Zorros/virología , Hemaglutininas Virales/genética , Visón/virología , Perros Mapache/virología , Secuencia de Aminoácidos , Animales , Animales Salvajes/virología , China , Virus del Moquillo Canino/clasificación , Virus del Moquillo Canino/aislamiento & purificación , Virus del Moquillo Canino/metabolismo , Perros , Evolución Molecular , Hemaglutininas Virales/química , Filogenia , Selección Genética
6.
J Am Chem Soc ; 136(46): 16185-200, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25245381

RESUMEN

The diimine-dithiolato ambipolar complexes Pt(dbbpy)(tdt) and Pt(dmecb)(bdt) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tdt(2-) = 3,4-toluenedithiolate; dmecb = 4,4'-dimethoxyester-2,2'-bipyridine; bdt(2-) = benzene-1,2-dithiolate) are prepared herein. Pt(dmecb)(bdt) exhibits photoconductivity that remains constant (photocurrent density of 1.6 mA/cm(2) from a 20 nm thin film) across the entire visible region of the solar spectrum in a Schottky diode device structure. Pt(dbbpy)(tdt) acts as donor when combined with the strong nitrofluorenone acceptors 2,7-dinitro-9-fluorenone (DNF), 2,4,7-trinitro-9-fluorenone (TRNF), or 2,4,5,7-tetranitro-9-fluorenone (TENF). Supramolecular charge transfer stacks form and exhibit various donor-acceptor stacking patterns. The crystalline solids are "black absorbers" that exhibit continuous absorptions spanning the entire visible region and significant ultraviolet and near-infrared wavelengths, the latter including long wavelengths that the donor or acceptor molecules alone do not absorb. Absorption spectra reveal the persistence of donor-acceptor interactions in solution, as characterized by low-energy donor/acceptor charge transfer (DACT) bands. Crystal structures show closely packed stacks with distances that underscore intermolecular DACT. (1)H NMR provides further evidence of DACT, as manifested by upfield shifts of aromatic protons in the binary adducts versus their free components, whereas 2D nuclear Overhauser effect spectroscopy (NOESY) spectra suggest coupling between dithiolate donor protons with nitrofluorenone acceptor protons, in correlation with the solid-state stacking. The NMR spectra also show significant peak broadening, indicating some paramagnetism verified by magnetic susceptibility data. Solid-state absorption spectra reveal further red shifts and increased relative intensities of DACT bands for the solid adducts vs solution, suggesting cooperativity of the DACT phenomenon in the solid state, as further substantiated by νC-O and νN-O IR bands and solid-state tight-binding computational analysis.

7.
Inorg Chem ; 53(5): 2346-8, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24533769

RESUMEN

Organoborylazadipyrromethenes were synthesized from free base and fluoroborylazadipyrromethenes and characterized with regard to their structural and electronic properties. B-N bond lengths, along with photophysical and redox behavior, appear dependent on the effective electronegativity at the boron atom as tuned by its substituents, with stronger electronegativity correlating to a shorter B-N bond length, red-shifted absorbance, enhanced fluorescence lifetime and yield, and positively shifted redox potentials.


Asunto(s)
Alquenos/química , Compuestos Aza/química , Boro/química , Complejos de Coordinación/química , Luz , Pirroles/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Electroquímica , Estructura Molecular
8.
J Funct Biomater ; 15(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535270

RESUMEN

Gelatin methacrylate (GelMA) is a photocrosslinkable biomaterial that has gained widespread use in tissue engineering due to its favorable biological attributes and customizable physical and mechanical traits. While GelMA is compatible with various cell types, distinct cellular responses are observed within GelMA hydrogels. As such, tailoring hydrogels for specific applications has become imperative. Thus, our objective was to develop GelMA hydrogels tailored to enhance cell viability specifically for TC28a2 chondrocytes in a three-dimensional (3D) cell culture setting. We investigated GelMA synthesis using PBS and 0.25M CB buffer, analyzed the mechanical and physical traits of GelMA hydrogels, and evaluated how varying GelMA crosslinking conditions (GelMA concentration, photoinitiator concentration, and UV exposure time) affected the viability of TC28a2 chondrocytes. The results revealed that GelMA synthesis using 0.25M CB buffer led to a greater degree of methacrylation compared to PBS buffer, and the LAP photoinitiator demonstrated superior efficacy for GelMA gelation compared to Irgacure 2959. Additionally, the stiffness, porosity, and swelling degree of GelMA hydrogels were predominantly affected by GelMA concentration, while cell viability was impacted by all crosslinking conditions, decreasing notably with increasing GelMA concentration, photoinitiator concentration, and UV exposure time. This study facilitated the optimization of crosslinking conditions to enhance cell viability within GelMA hydrogels, a critical aspect for diverse biomedical applications.

9.
Viruses ; 15(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37766279

RESUMEN

Canine distemper (CD), caused by canine distemper virus (CDV), is a highly contagious and lethal disease in domestic and wild carnivores. Although CDV live-attenuated vaccines have reduced the incidence of CD worldwide, low levels of protection are achieved in the presence of maternal antibodies in juvenile animals. Moreover, live-attenuated CDV vaccines may retain residual virulence in highly susceptible species and cause disease. Here, we generated several CDV DNA vaccine candidates based on the biscistronic vector (pIRES) co-expressing virus wild-type or codon-optimized hemagglutinin (H) and nucleocapsid (N) or ferret interferon (IFN)-γ, as a molecular adjuvant, respectively. Apparently, ferret (Mustela putorius furo)-specific codon optimization increased the expression of CDV H and N proteins. A ferret model of CDV was used to evaluate the protective immune response of the DNA vaccines. The results of the vaccinated ferrets showed that the DNA vaccine co-expressing the genes of codon-optimized H and ferret IFN-γ (poptiH-IRES-IFN) elicited the highest anti-CDV serum-neutralizing antibodies titer (1:14) and cytokine responses (upregulated TNF-α, IL-4, IL-2, and IFN-γ expression) after the third immunization. Following vaccination, the animals were challenged with a lethal CDV 5804Pe/H strain with a dose of 105.0 TCID50. Protective immune responses induced by the DNA vaccine alleviated clinical symptoms and pathological changes in CDV-infected ferrets. However, it cannot completely prevent virus replication and viremia in vivo as well as virus shedding due to the limited neutralizing antibody level, which eventually contributed to a survival rate of 75% (3/4) against CDV infection. Therefore, the improved strategies for the present DNA vaccines should be taken into consideration to develop more protective immunity, which includes increasing antigen expression or alternative delivery routes, such as gene gun injection.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Vacunas de ADN , Animales , Perros , Hurones , Vacunas de ADN/genética , Hemaglutininas/genética , Virus del Moquillo Canino/genética , Interferón gamma , Anticuerpos Neutralizantes , Moquillo/prevención & control
10.
ACS Omega ; 7(34): 30291-30296, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36061685

RESUMEN

Inspired by therapeutic potential, the molecular engineering of macrocycles is garnering increased interest. Exercising control with design, however, is challenging due to the dynamic behavior that these molecules must demonstrate in order to be bioactive. Herein, the value of metadynamics simulations is demonstrated: the free-energy surfaces calculated reveal folded and flattened accessible conformations of a 24-atom macrocycle separated by barriers of ∼6 kT under experimentally relevant conditions. Simulations reveal that the dominant conformer is folded-an observation consistent with a solid-state structure determined by X-ray crystallography and a network of rOes established by 1H NMR. Simulations suggest that the macrocycle exists as a rapidly interconverting pair of enantiomeric, folded structures. Experimentally, 1H NMR shows a single species at room temperature. However, at lower temperature, the interconversion rate between these enantiomers becomes markedly slower, resulting in the decoalescence of enantiotopic methylene protons into diastereotopic, distinguishable resonances due to the persistence of conformational chirality. The emergence of conformational chirality provides critical experimental support for the simulations, revealing the dynamic nature of the scaffold-a trait deemed critical for oral bioactivity.

11.
Front Vet Sci ; 7: 570277, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195559

RESUMEN

Canine distemper (CD), caused by the CDV variant strain with HI542N/Y549H, has become an epidemic in fur-bearing animals in China since 2012. To well understand the genomic and replicated characteristics of the CDV variants, we determined the viral growth kinetics and completed the genome sequences of two CDV strains, namely SDZC(17)M2 and LNDL(17)M4, isolated from CDV-infected minks from Shandong and Liaoning province in China, in 2017. SDZC(17)M2 showed higher viral titers and extensive syncytia in BHK-minkSLAM (BMS) cells than LNDL(17)M4. Although both two strains belong to the Asia-1 genotype and clustered an independent clade in the phylogenetic tree, SDZC(17)M2, harboring I542N/Y549H substitutions in the H protein, shared high identity (99.3-99.6% nt) with the other variant strains, whereas LNDL(17)M4, with the only Y549H substitution, shared a lower identity (97.7%-97.9% nt) with the other variant strains. Furthermore, a novel R223K substitution was identified in the conserved cleavage site (RRQRR → RRQKR) of the F protein in the SDZC(17)M2 strain. However, it which did not significantly affect the cell to cell fusion activity when combined with the CDV H/minkSLAM in BHK-21 cells. The key variations in the genome contributed to the virulence and the evolutionary trend need to be determined in the future.

12.
Chemosphere ; 48(1): 59-68, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12137058

RESUMEN

Natural organic matter (NOM) is known to be complex in nature with varying structural and functional characteristics. In this study, an aquatic NOM was fractionated into the polyphenolic-rich (NOM-PP) and the carbohydrate-rich (NOM-CH) fractions in an attempt to better characterize their chemical and structural properties along with a reference soil humic acid (SHA). Various spectroscopic techniques were employed for the study, including ultraviolet-visible (UV/Vis). 13C-nuclear magnetic resonance, Fourier-transform infrared, fluorescence, and electron paramagnetic resonance spectroscopies. Results indicate that the relative abundance of aromatic C=C and methoxyl (-OCH3) functional groups are in the order of SHA > NOM-PP > NOM-CH. However, the aquatic NOM-PP and NOM-CH fractions are characterized by high contents of carboxylic and alcoholic functional groups relative to the SHA. In particular, the NOM-PP fraction appears to contain more phenolic and ketonic functional groups than the NOM-CH and SHA fractions, and it gives a strong fluorescence and high paramagnetic spin count. On the other hand, the NOM-CH fraction possesses a relatively low amount of carbon but a high amount of oxygen or oxygen-containing structural features, such as carbohydrate-OH and carboxylic groups, and shows the least fluorescence intensity and paramagnetic spin counts. Results of these spectroscopic studies confirm the heterogeneous nature of NOM, and point out the importance of isolation and improved characterization of various NOM subcomponents in order to better understand the behavior and roles of NOM in the natural environment.


Asunto(s)
Compuestos Orgánicos/análisis , Contaminantes del Agua/análisis , Sustancias Húmicas/análisis , Análisis Espectral , Relación Estructura-Actividad
13.
Bioelectromagnetics ; 26(7): 558-63, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16037957

RESUMEN

The effect of a strong static 14.1 T magnetic field on log phase cells of bacterial strain Shewanella oneidensis MR-1 was evaluated by using whole genome microarray of this bacterium. Although differences were not observed between the treatment and control by measuring the optical density (OD), colony forming unit (CFU), as well as post-exposure growth of cells, transcriptional expression levels of 65 genes were altered according to our microarray data. Among these genes, 21 were upregulated while other 44 were downregulated, compared with control.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Magnetismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteoma/metabolismo , Shewanella/metabolismo , Shewanella/efectos de la radiación , Transducción de Señal/fisiología , Activación Transcripcional/fisiología , Proteínas Bacterianas/genética , Proliferación Celular/efectos de la radiación , Mapeo Cromosómico/métodos , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Proteoma/genética , Shewanella/crecimiento & desarrollo , Transducción de Señal/efectos de la radiación , Activación Transcripcional/efectos de la radiación
14.
Anal Chem ; 77(10): 3231-7, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15889913

RESUMEN

A new optical metal ion sensor based on diffusion followed by an immobilizing reaction has been developed. The current sensor is based on a model that unifies two fundamental processes which a metal analyte undergoes when it is exposed to a porous, ligand-grafted monolith: (a) diffusion of metal ions to the binding sites and (b) metal-ligand (ML(n)) complexation. A slow diffusion of the metal ions is followed by their fast immobilizing reaction with the ligands in the monolith to give a complex. Inside the region where the ligands have been saturated, the diffusion of the metal ions reaches a steady state with a constant external metal ion concentration (C(0)). If the complex ML(n) could be observed spectroscopically, the absorbance of the product A(p) follows: A(p) = Kt(1/2), K = 2epsilon(p)(L(0)C(0)D)(1/2). D = diffusion constant of the metal ions inside the porous solid; L(0) = concentration of the ligands grafted in the monolith; and t = time. This equation is straightforward to use, and the K vs C(0)(1/2) plot provides the correlations with the concentrations (C(0)) of the metal ions. This is a rare optical sensor for quantitative metal ion analysis. The use of the model in a mesoporous sol-gel monolith containing grafted amine ligands for quantitative Cu(2+) sensing is demonstrated. This model may also be used in other chemical sensors that depend on diffusion of analytes followed by immobilizing reactions in porous sensors containing grafted/encapsulated functional groups/molecules.

15.
Bioelectromagnetics ; 25(2): 84-91, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14735557

RESUMEN

Apparent biological effects of strong magnetic fields were observed in the hatching behavior of fresh mosquito eggs in the center of 9.4 and 14.1 T magnets. In the first experiment performed at 20 +/- 1 degrees C, the hatching was delayed 32 h by a 9.4 T magnetic field and 71 h by a 14.1 T magnetic field. In the second experiment performed at 22 +/- 1 degrees C, the hatching was delayed 14 h by a 9.4 T magnetic field and 27 h by a 14.1 T magnetic field. In the magnetic field range of this study, the hatching delay increases nonlinearly with the intensity of the magnetic field. The experimental results also suggest that the biological effects of magnetic fields could be reversible or partially reversible to some extent.


Asunto(s)
Anopheles/embriología , Anopheles/efectos de la radiación , Campos Electromagnéticos , Reproducción/fisiología , Reproducción/efectos de la radiación , Cigoto/fisiología , Cigoto/efectos de la radiación , Animales , Anopheles/crecimiento & desarrollo , Relación Dosis-Respuesta en la Radiación , Embrión no Mamífero/fisiología , Embrión no Mamífero/efectos de la radiación , Dosis de Radiación , Tasa de Supervivencia , Temperatura
16.
J Exp Biol ; 206(Pt 13): 2221-8, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12771171

RESUMEN

In this study, we applied proton NMR to measure the permeation of two cryoprotective agents (CPAs), ethylene glycol (EG) and methanol, into 1st instar Anopheles larvae. Calibration with standard solutions of EG or methanol (0-10 mol l(-1)) confirmed the reliability of the NMR measurements for determining the concentration of these solutes. To assess permeation, larvae were immersed in 1.5 mol l(-1) EG or 1.5 mol l(-1) methanol for different periods of time at 22 degrees C. The concentration of both CPAs in the larvae was then measured as a function of exposure time using (1)H-NMR spectroscopy. Results show that after a 6 h exposure to 1.5 mol l(-1) EG, the larval concentration of EG reaches a maximum value of 1.44 mol l(-1), which is 96% of the theoretical maximum. By contrast, after just 1 h exposure to 1.5 mol l(-1) methanol, the larval methanol concentration reaches its maximum, which, however, is only 75% of the theoretical maximum. Toxicity data show that larval survival remains 91% and 95% after 4 h and 1 h exposure to 1.5 mol l(-1) EG and 1.5 mol l(-1) methanol, respectively, at which time the larval concentration of EG and methanol has risen to 1.21 mol l (-1) and 1.13 mol l(-1), respectively. These results suggest that CPAs such as EG and methanol do permeate Anopheles larvae to up to 81% and 75% of equilibrium, respectively, before the exposure becomes toxic.


Asunto(s)
Anopheles/metabolismo , Glicol de Etileno/farmacocinética , Glicol de Etileno/toxicidad , Metanol/farmacocinética , Metanol/toxicidad , Animales , Crioprotectores , Femenino , Larva/metabolismo , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA