Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hum Genet ; 143(2): 137-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182908

RESUMEN

Several studies have emphasized the role of DNA methylation in vitiligo. However, its profile in human skin of individuals with vitiligo remains unknown. Here, we aimed to study the DNA methylation profile of vitiligo using pairwise comparisons of lesions, peri-lesions, and healthy skin. We investigated DNA methylation levels in six lesional skin, six peri-lesional skin, and eight healthy skin samples using an Illumina 850 K methylation chip. We then integrated DNA methylation data with transcriptome data to identify differentially methylated and expressed genes (DMEGs) and analyzed their functional enrichment. Subsequently, we compared the methylation and transcriptome characteristics of all skin samples, and the related genes were further studied using scRNA-seq data. Finally, validation was performed using an external dataset. We observed more DNA hypomethylated sites in patients with vitiligo. Further integrated analysis identified 264 DMEGs that were mainly functionally enriched in cell division, pigmentation, circadian rhythm, fatty acid metabolism, peroxidase activity, synapse regulation, and extracellular matrix. In addition, in the peri-lesional skin, we found that methylation levels of 102 DMEGs differed prior to changes in their transcription levels and identified 16 key pre-DMEGs (ANLN, CDCA3, CENPA, DEPDC1, ECT2, DEPDC1B, HMMR, KIF18A, KIF18B, TTK, KIF23, DCT, EDNRB, MITF, OCA2, and TYRP1). Single-cell RNA analysis showed that these genes were associated with cycling keratinocytes and melanocytes. Further analysis of cellular communication indicated the involvement of the extracellular matrix. The expression of related genes was verified using an external dataset. To the best of our knowledge, this is the first study to report a comprehensive DNA methylation profile of clinical vitiligo and peri-lesional skin. These findings would contribute to future research on the pathogenesis of vitiligo and potential therapeutic strategies.


Asunto(s)
Vitíligo , Humanos , Vitíligo/genética , Vitíligo/patología , Metilación de ADN , Multiómica , Piel/metabolismo , Piel/patología , ADN , Transcriptoma , China , Proteínas de Ciclo Celular/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas Activadoras de GTPasa/genética
2.
Anal Chem ; 96(28): 11404-11411, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38960896

RESUMEN

Microalgae metabolite analysis is fundamental for the rational design of metabolic engineering strategies for the biosynthesis of high-value products. Mass spectrometry (MS) has been utilized for single-cell microalgae analysis. However, limitations in the detection throughput and polarities of detectable substances make it difficult to realize high-throughput screening of high-performance microalgae. Herein, a plasma-assisted label-free mass cytometry, named as PACyESI-MS, was proposed combining the advantages of orthogonal hybrid ionization and high-throughput MS analysis, which realized rapid metabolite detection of single microalgae. The cell detection throughput of PACyESI-MS was up to 52 cells/min. Dozens of the critical primary and secondary metabolites within single microalgae were detected simultaneously, including pigments, lipids, and energy metabolites. Furthermore, metabolite changes of Chlamydomonas reinhardtii and Haematococcus pluvialis under nitrogen deficiency stress were studied. Discrimination of Chlamydomonas under different nutrient conditions was realized using single-cell metabolite profiles obtained by PACyESI-MS. The relationships between the accumulation of bioactive astaxanthin and changes in functional primary metabolites of Haematococcus were investigated. It was demonstrated that PACyESI-MS can detect the flexible change of metabolites in single microalgae cells under different nutritional conditions and during the synthesis of high-value products, which is expected to become an important tool for the design of metabolic engineering-based high-performance microalgae factories.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Microalgas/metabolismo , Microalgas/química , Chlamydomonas reinhardtii/metabolismo , Espectrometría de Masas/métodos , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual/métodos , Chlorophyceae/metabolismo
3.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334074

RESUMEN

Chemoresistance to triple-negative breast cancer (TNBC) is a critical issue in clinical practice. Lipid metabolism takes a unique role in breast cancer cells; especially, unsaturated lipids involving cell membrane fluidity and peroxidation are highly remarked. At present, for the lack of a high-resolution molecular recognition platform at the single-cell level, it is still hard to systematically study chemoresistance heterogeneity based on lipid unsaturation proportion. By designing a single-cell mass spectrometry workflow based on CyESI-MS, we profiled the unsaturated lipids of TNBC cells to evaluate lipidomic remodeling under platinum stress. Profiling revealed the heterogeneity of the polyunsaturated lipid proportion of TNBC cells under cisplatin treatment. A cluster of cells identified by polyunsaturated lipid accumulation was found to be involved in platinum sensitivity. Furthermore, we found that the chemoresistance of TNBC cells could be regulated by fatty acid supplementation, which determinates the composition of unsaturated lipids. These discoveries provide insights for monitoring and controlling cellular unsaturated lipid proportions to overcome chemoresistance in breast cancer.

4.
Clin Immunol ; 255: 109773, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717673

RESUMEN

The regulatory effect of DNA methylation on the pathogenesis of acne vulgaris is completely unknown. Herein we analyzed the DNA methylation profile in skin samples of acne vulgaris and further integrated it with gene expression profiles and single-cell RNA-sequencing data. Finally, 31,134 differentially methylated sites and 770 differentially methylated and expressed genes (DMEGs) were identified. The multi-omics analysis suggested the importance of DNA methylation in inflammation and immunity in acne. And DMEGs were verified in an external dataset and were closely related to early inflammatory acne. Additionally, we conducted experiments to verify the mRNA expression and DNA methylation level of DMEGs. This study supports the significant contribution of epigenetics to the pathogenesis of acne vulgaris and may provide new ideas for the molecular mechanisms of and potential therapeutic strategies for acne vulgaris.

5.
Chem Biodivers ; 20(6): e202300263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141509

RESUMEN

The Complexity-to-Diversity (CtD) strategy was applied to synthesize a 23-member compound collection from the natural product drupacine, including 21 novel compounds. An unusual benzo [d] cyclopenta [b] azepin skeleton was constructed by Von Braun reaction to cleave C-N bond of drupacine. Moreover, compound 10 has potential cytotoxicity to human colon cancer cells with low toxicity to the normal human colon mucosal epithelial cell lines.


Asunto(s)
Productos Biológicos , Neoplasias del Colon , Harringtoninas , Humanos , Productos Biológicos/farmacología , Harringtoninas/química , Línea Celular
6.
Analyst ; 147(24): 5754-5763, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36413216

RESUMEN

NK cell-mediated immunotherapy has received increasing attention in the past decade due to its efficacy and bio-safety. The composition and content of lipids in individual cells are closely related to NK cell-mediated cytotoxicity, especially polyunsaturated fatty acids (PUFA) which are oxidized during NK cell-mediated apoptosis. Here we investigated the changes of lipids in single HepG2 cells by label-free mass cytometry and obtained information on 53 lipids and 13 oxidized lipids after the interaction with NK92 MI cells. We found that the contents of lipids and oxidized lipids of HepG2 cells changed obviously during the NK cell-mediated apoptosis. The HepG2 cells could be classified into two phenotypes after co-culturing with NK92 MI cells based on the ratio of PC(38:6-2OH)/PC(38:6) in individual cells, which may serve as a feature to evaluate NK cell-mediated cytotoxicity. The present work used the lipids and oxidized lipids of individual cells to reveal the heterogeneity in NK cell-mediated apoptosis which would be a powerful method for evaluating the cytotoxicity of NK cells at the single-cell level.


Asunto(s)
Células Asesinas Naturales , Lípidos , Humanos , Recuento de Células , Células Hep G2 , Apoptosis
7.
J Am Chem Soc ; 143(31): 12361-12368, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324318

RESUMEN

The tool box of site-specific cleavage for nucleic acid has been an increasingly attractive subject. Especially, the recent emergence of the orthogonally activatable DNA device is closely related to the site-specific scission. However, most of these cleavage strategies are based on exogenous assistance, such as laser irradiation. Endogenous strategies are highly desirable for the orthogonally regulatable DNA machine to explore the crucial intracellular biological process and cell signal network. Here, we found that the accurate site-specific cleavage reaction of phosphorothioate (PT) modified DNA by using myeloperoxidase (MPO). A scissors-like mechanism by which MPO breaks PT modification through chloride oxidation has been revealed. Furthermore, we have successfully applied the scissors to activate PT-modified hairpin-DNA machines to produce horseradish peroxidase (HRP)-mimicking DNAzyme or initiate hybridization chain reaction (HCR) amplification. Since MPO plays an important role in the pathway related to oxidative stress in cells, through the HCR amplification activated by this tool box, the oxidative stress in living cells has been robustly imaged. This work proposes an accurate and endogenous site-specific cleavage tool for the research of biostimuli and the construction of DNA molecular devices.


Asunto(s)
ADN/metabolismo , Peroxidasa/metabolismo , Fosfatos/metabolismo , ADN/química , Humanos , Peroxidasa/química , Fosfatos/química
8.
Anal Chem ; 93(29): 10282-10291, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34259005

RESUMEN

Discriminating various leukocyte subsets with specific functions is critical due to their important roles in the development of many diseases. Here, we proposed a general strategy to unravel leukocytes heterogeneity and screen differentiated metabolites as biomarker candidates for leukocyte subtypes using the label-free mass cytometry (CyESI-MS) combined with a homemade data processing workflow. Taking leukemia cells as an example, metabolic fingerprints of single leukemia cells were obtained from 472 HL-60, 416 THP-1, 313 U937, 356 Jurkat, and 366 Ramos cells, with throughput up to 40 cells/min. Five leukemia subtypes were clearly distinguished by unsupervised learning t-SNE analysis of the single-cell metabolic fingerprints. Cell discrimination in the mixed leukemia cell samples was also realized by supervised learning of the single-cell metabolic fingerprints with high recovery and good repetition (98.31 ± 0.24%, -102.35 ± 4.82%). Statistical analysis and metabolite assignment were carried out to screen characteristic metabolites for discrimination and 36 metabolites with significant differences were annotated. Then, differentiated metabolites for pairwise discrimination of five leukemia subtypes were further selected as biomarker candidates. Furthermore, discriminating cultured leukemia cells from human normal leukocytes, separated from fresh human peripheral blood, was performed based on single-cell metabolic fingerprints as well as the proposed biomarker candidates, unveiling the potential of this strategy in clinical research. This work makes efforts to realize high-throughput single-leukocyte metabolic analysis and metabolite-based discrimination of leukocytes. It is expected to be a powerful means for the clinical molecular diagnosis of hematological diseases.


Asunto(s)
Leucemia , Biomarcadores , Humanos , Leucemia/diagnóstico , Leucocitos
9.
Anal Chem ; 91(9): 5980-5986, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30973226

RESUMEN

Multiplex biomolecular analysis with inductively coupled plasma mass spectrometry (ICP-MS) becomes increasingly important in clinical diagnosis and single cell analysis. However, the sensitivity of ICP-MS-based immunoassay is only comparable or lower than those of fluorescence methods at the present stage. Therefore, designing elemental tags with a large number of metal atoms is necessary to achieve high-sensitive detection. In this work, we proposed a new strategy to build up elemental tag loading with hundreds of rare earth ions by coupling alkyne-DNA chains with rare earth element (REE)-DOTA complexes a click chemistry reaction. There are about 2 orders of magnitude improvement in sensitivity compared with single metal-ion tags. DNA chains with multialkynyl groups were facilely prepared by PCR synthesis. Moreover, the DNA-based elemental tags own excellent water-solubility and biocompatibility. The tags would be potentially applied to mass cytometry and clinical diagnosis.


Asunto(s)
Alquinos/química , Inmunoensayo/métodos , Espectrometría de Masas/métodos , Metales de Tierras Raras/química , Oligonucleótidos/química , alfa-Fetoproteínas/análisis , Humanos
10.
Anal Chem ; 91(15): 9777-9783, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31242386

RESUMEN

Comprehensive analysis of single-cell metabolites is critical since differences in cellular chemical compositions give rise to specialized biological functions. Herein, we propose a label-free mass cytometry by coupling flow cytometry to ESI-MS (named CyESI-MS) for high-coverage and high-throughput detection of cellular metabolites. Cells in suspension were isolated, online extracted by sheath fluid, and lysed during gas-assisted electrospray, followed by real-time MS analysis. Hundreds of metabolites, including nucleotides, amino acids, peptides, carbohydrates, fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids, were detected and identified from one single cell. Discrimination of four types of cancer cell lines and even three subtypes of breast cancer cells was readily achieved using their distinct metabolic profiles. Furthermore, we screened out 102 characteristic ions from 615 detected peak signals for distinguishing breast cancer cell subtypes and identified 40 characteristic molecules which exhibited significant differences among these subtypes and would be potential metabolic markers for clinical diagnosis. CyESI-MS is expected to be a new-generation mass cytometry for studying cell heterogeneity on the metabolic level.


Asunto(s)
Citometría de Flujo/métodos , Metabolómica/métodos , Biomarcadores/metabolismo , Línea Celular Tumoral , Humanos
12.
Anal Chem ; 90(16): 9897-9903, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30040884

RESUMEN

We have combined droplet extraction and a pulsed direct current electrospray ionization mass spectrometry method (Pico-ESI-MS) to obtain information-rich metabolite profiling from single cells. We studied normal human astrocyte cells and glioblastoma cancer cells. Over 600 tandem mass spectra (MS2) of metabolites from a single cell were recorded, allowing the successful identification of more than 300 phospholipids. We found the ratios of unsaturated phosphatidylcholines (PCs) to saturated PCs were significantly higher in glioblastoma cells compared to normal cells. In addition, both isomeric PC (17:1) and (phosphatidylethanolamine) PE (20:1) were found in glioblastoma cells, whereas only PC (17:1) was observed in astrocyte cells. Our method paves the way to characterize the chemical contents of single cells, providing rich metabolome information. We suggest that this technique is general and can be applied to other life science studies such as differentiation and drug resistance of individual cells.


Asunto(s)
Fraccionamiento Químico/métodos , Metaboloma , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Astrocitos/metabolismo , Línea Celular Tumoral , Humanos , Análisis de la Célula Individual/métodos
13.
Life Sci ; 348: 122698, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710278

RESUMEN

Kidney transplantation is the preferred treatment for pediatric end-stage renal disease. However, pediatric recipients face unique challenges due to their prolonged need for kidney function to accommodate growth and development. The continual changes in the immune microenvironment during childhood development and the heightened risk of complications from long-term use of immunosuppressive drugs. The overwhelming majority of children may require more than one kidney transplant in their lifetime. Acute rejection (AR) stands as the primary cause of kidney transplant failure in children. While pathologic biopsy remains the "gold standard" for diagnosing renal rejection, its invasive nature raises concerns regarding potential functional impairment and the psychological impact on children due to repeated procedures. In this review, we outline the current research status of novel biomarkers associated with AR in urine and blood after pediatric kidney transplantation. These biomarkers exhibit superior diagnostic and prognostic performance compared to conventional ones, with the added advantages of being less invasive and highly reproducible for long-term graft monitoring. We also integrate the limitations of these novel biomarkers and propose a refined monitoring model to optimize the management of AR in pediatric kidney transplantation.


Asunto(s)
Biomarcadores , Rechazo de Injerto , Trasplante de Riñón , Trasplante de Riñón/efectos adversos , Humanos , Rechazo de Injerto/diagnóstico , Biomarcadores/orina , Niño , Fallo Renal Crónico/cirugía , Enfermedad Aguda
14.
Transpl Immunol ; 85: 102082, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002808

RESUMEN

BACKGROUND: There seems to be a close link between the changing levels of selenoproteins, which are important for maintaining redox homeostasis in the body, and acute rejection of kidney transplants. The aim of this study was to explore the diagnostic value of selenoprotein change characteristics in renal tissues for acute rejection of kidney transplantation. METHODS: We first explored the potential biological functions of 25 selenoproteins in the human body by enrichment analysis and used the HPA database to clarify the expression levels of selenoproteins in kidney tissues; We then constructed a diagnostic model using "Logistic regression analysis" and "Nomogram model"; Calibration curves and ROC curves were used to evaluate the diagnostic models, and clinical decision curves (DCA) were used to assess the diagnostic value of selenoprotein changes to the clinic; Single-gene GSEA enrichment analysis to further explore the potential regulatory mechanisms of selenoproteins; The Cibersort algorithm explores the level of immune cell infiltration and uses correlation analysis to clarify the correlation between selenoproteins and immune cells; We further assessed the diagnostic value of selenoproteins in kidney transplantation ABMR and TCMR, respectively. Finally, we validated the expression level of selenoproteins in kidney tissues by constructing a rat model of acute rejection of kidney transplantation using transcriptome sequencing. RESULTS: Our enrichment analysis revealed that selenoproteins are mainly closely associated with biological functions such as oxidative stress, inflammation, and immune regulation (P<0.05); The HPA database suggests that a total of 23 selenoproteins can be expressed in kidney tissue. We constructed a diagnostic model using these 23 selenoproteins, and both calibration curves and ROC curves proved that their change levels have good diagnostic value for acute rejection of kidney transplantation, and DCA curves proved the role of selenoproteins in clinical decision-making; Single-gene GSEA enrichment analysis revealed that selenoproteins are closely associated with immune regulation-related pathways (P<0.05); The Cibersort algorithm identified 10 immune cell infiltration levels that were significantly altered during acute rejection of kidney transplantation (P<0.05), while correlation analyses indicated that selenoproteins correlate with multiple immune cell infiltrations; In ABMR and TCMR, we again verified the diagnostic value of selenoprotein changes in acute rejection of kidney transplantation. Finally, we found significant differences in the expression levels of nine selenoproteins in a rat model of acute rejection of kidney transplantation (P<0.05). CONCLUSION: Changes in selenoproteins in renal tissues have good diagnostic value for acute rejection of kidneyl transplantation, and selenoproteins may be able to be a potential target for alleviating acute rejection of kidney transplantation.

15.
3D Print Addit Manuf ; 11(1): 24-39, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38389685

RESUMEN

Invar 36 exhibits extremely low thermal expansion coefficients at low temperatures but also low yield strength (YS), which greatly restricts its application as a structural material. In this study, a small fraction of pure titanium powder particles was added into Invar 36 by powder mixing and selective laser melting (SLM) with the aim of further improving tensile strengths of Invar 36. It was found that increased laser power led to increased grain size and to slight decrease in YS in Invar 36. During SLM, amorphous SiO2 nanoparticles were formed and homogeneously distributed in Invar 36. With the addition of 2 at% Ti powder particles, grains became larger and the crystallographic texture along <001> and <111> increased to some extent. Moreover, the bottom of solidified melt pools was segregated with Ti while the matrix was homogeneously decorated by a great number of nano-sized spherical Ti2O3 particles. These particles were found to have effectively impeded dislocation motion during plastic deformation, leading to significant improvement in 0.2% YS and ultimate tensile strength. The above precipitation led to consumption of a small amount of Ni from the matrix, which caused a minor compromise in thermal expansion properties. Nonetheless, the newly synthesized Invar 36-Ti alloy still exhibits low thermal expansion coefficients at low temperatures and remarkably enhanced tensile strengths.

16.
Chem Commun (Camb) ; 60(4): 392-395, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38053454

RESUMEN

Lymphocytes play crucial roles in the human immune system; however, detailed metabolite characteristics need to be further investigated. Herein, we propose a lymphocyte classification method based on metabolite profiling at the single-cell level. The percentages of different lymphocyte types were calculated with a low margin of error, confirming that the metabolites could serve as a basis for lymphocyte classification. Furthermore, we analyzed the CD4/CD8 ratio in human peripheral blood to verify the feasibility of this method for the classification of lymphocyte subtypes. The proposed method is expected to be a potential tool for the clinical diagnosis of lymphocyte-related diseases.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos , Humanos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD4-Positivos/metabolismo
17.
Front Pharmacol ; 14: 1147414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937839

RESUMEN

Maintaining the balance of a cell's redox function is key to determining cell fate. In the critical redox system of mammalian cells, glutathione peroxidase (GPX) is the most prominent family of proteins with a multifaceted function that affects almost all cellular processes. A total of eight members of the GPX family are currently found, namely GPX1-GPX8. They have long been used as antioxidant enzymes to play an important role in combating oxidative stress and maintaining redox balance. However, each member of the GPX family has a different mechanism of action and site of action in maintaining redox balance. GPX1-4 and GPX6 use selenocysteine as the active center to catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance. In addition to reducing H2O2 and small molecule hydroperoxides, GPX4 is also capable of reducing complex lipid compounds. It is the only enzyme in the GPX family that directly reduces and destroys lipid hydroperoxides. The active sites of GPX5 and GPX7-GPX8 do not contain selenium cysteine (Secys), but instead, have cysteine residues (Cys) as their active sites. GPX5 is mainly expressed in epididymal tissue and plays a role in protecting sperm from oxidative stress. Both enzymes, GPX7 and GPX8, are located in the endoplasmic reticulum and are necessary enzymes involved in the oxidative folding of endoplasmic reticulum proteins, and GPX8 also plays an important role in the regulation of Ca2+ in the endoplasmic reticulum. With an in-depth understanding of the role of the GPX family members in health and disease development, redox balance has become the functional core of GPX family, in order to further clarify the expression and regulatory mechanism of each member in the redox process, we reviewed GPX family members separately.

18.
Anticancer Agents Med Chem ; 23(15): 1765-1773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622448

RESUMEN

BACKGROUND: Melanoma is of great interest due to its aggressive behavior and less favorable prognosis. The need for the development of novel drugs for the treatment of melanoma is urgent. Considerable evidence indicated that Schisandrin B (Sch B), a bioactive compound extracted from Schisandra chinensis, has numerous anti-tumor properties in multiple malignant tumors. A few studies have reported the effect of Sch B on melanogenesis in the melanoma B16F10 cell line; however, the specific anti-tumor effects and mechanisms need to be further explored. OBJECTIVE: This study aimed to investigate the effects of Sch B on the cell viability, migration, invasion, and cell cycleblocking of melanoma cells and explore its potential anti-tumor mechanism in vitro and in vivo. METHODS: Melanoma cells (A375 and B16) were treated with different concentrations of Sch B (0, 20, 40, 60, or 80 µM), with dimethyl sulfoxide (DMSO) as control. The inhibitory effect of Sch B on A375 and B16 melanoma cells was verified by crystal violet assay and CCK8 assay. The flow cytometry was performed to observe cell cycle blocking. The effect of Sch B on the migration and invasion of melanoma cells was detected by wound healing assay and transwell assay, respectively. Western blot analysis was used to determine protein expression levels. The growth of the A375 melanoma xenograft-treated groups and immunohistochemical staining were conducted to assess the anti-tumor effect of Sch B in vivo. RESULTS: The crystal violet assay and CCK8 assay showed that Sch B significantly inhibited melanoma cell viability in a dose-dependent manner. Meanwhile, the flow cytometry analysis revealed that Sch B induced melanoma cell cycleblocking at the G1/S phase. In addition, the wound healing assay and transwell assay showed that Sch B inhibited the migration and invasion of melanoma cells. Furthermore, by establishing an animal model, we found that Sch B significantly inhibited the growth of melanoma in vivo. The potential mechanism could be that Sch B inhibited the activity of the Wnt/ß-catenin signaling pathway. CONCLUSION: These findings indicated that Sch B inhibits the cell viability and malignant progression of melanoma cells via the Wnt/ß-catenin pathway and induces cell cycle arrest. Our study suggests that Sch B has potential as a bioactive compound for the development of new drugs for melanoma.


Asunto(s)
Melanoma , Vía de Señalización Wnt , Animales , Humanos , Supervivencia Celular , Melanoma/tratamiento farmacológico
19.
Foods ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174330

RESUMEN

The study investigated the effects of different microwave vacuum freeze-drying powers (100-500 W) on the emulsifying properties and structural characteristics of egg white protein, which is of great significance in enhancing the added value of EWP and promoting its application. Emulsification analysis revealed that the emulsification performance was significantly influenced by microwave power and reached its maximum at 300 W. Fourier-transform infrared spectroscopy (FT-IR) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses showed that microwave vacuum freeze-drying treatment altered the secondary structure of EWP without changing its peptide structure. Fluorescence measurements indicated that the maximum fluorescence emission intensity decreased, and the maximum emission wavelength shifted towards blue as the power increased. Particle size, zeta potential, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses showed that the average particle size of EWP reached the minimum value of 1203.66 nm, the absolute value of zeta potential reached the maximum value of 41.35 mV, and the thermal stability was strongest, with a more uniform and loose structure observed at 300 W. Texture profile analysis (TPA) showed that appropriate power treatment significantly enhanced the chewiness and viscoelasticity of egg white protein. Therefore, appropriate power treatment could effectively improve the emulsifying properties and stability.

20.
Curr Opin Chem Biol ; 71: 102226, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347197

RESUMEN

Metabolites are the end products of cellular vital activities and can reflect the state of cellular to a certain extent. Rapid change of metabolites and the low abundance of signature metabolites cause difficulties in single-cell detection, which is a great challenge in single-cell metabolomics analysis. Mass spectrometry (MS) is a powerful tool that uniquely suited to detect intracellular small-molecule metabolites and has shown good application in single-cell metabolite analysis. In this mini-review, we describe three types of emerging technologies for MS-based single-cell metabolic analysis in recent years, including nano-ESI-MS based single-cell metabolomics analysis, high-throughput analysis via flow cytometry, and cellular metabolic imaging analysis. These techniques provide a large amount of single-cell metabolic data, allowing the potential of MS in single-cell metabolic analysis is gradually being explored and is of great importance in disease and life science research.


Asunto(s)
Metabolómica , Espectrometría de Masa por Ionización de Electrospray , Metabolómica/métodos , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA