Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669595

RESUMEN

Reliable and continuous navigation solutions are essential for high-accuracy location-based services. Currently, the real-time kinematic (RTK) based Global Positioning System (GPS) is widely utilized to satisfy such requirements. However, RTK's accuracy and continuity are limited by the insufficient number of the visible satellites and the increasing length of base-lines between reference-stations and rovers. Recently, benefiting from the development of precise point positioning (PPP) and BeiDou satellite navigation systems (BDS), the issues existing in GPS RTK can be mitigated by using GPS and BDS together. However, the visible satellite number of GPS + BDS may decrease in dynamic environments. Therefore, the inertial navigation system (INS) is adopted to bridge GPS + BDS PPP solutions during signal outage periods. Meanwhile, because the quality of BDS geosynchronous Earth orbit (GEO) satellites is much lower than that of inclined geo-synchronous orbit (IGSO) satellites, the predicted observation residual based robust extended Kalman filter (R-EKF) is adopted to adjust the weight of GEO and IGSO data. In this paper, the mathematical model of the R-EKF aided GEO/IGSO/GPS PPP/INS tight integration, which uses the raw observations of GPS + BDS, is presented. Then, the influences of GEO, IGSO, INS, and R-EKF on PPP are evaluated by processing land-borne vehicle data. Results indicate that (1) both GEO and IGSO can provide accuracy improvement on GPS PPP; however, the contribution of IGSO is much more visible than that of GEO; (2) PPP's accuracy and stability can be further improved by using INS; (3) the R-EKF is helpful to adjust the weight of GEO and IGSO in the GEO/IGSO/GPS PPP/INS tight integration and provide significantly higher positioning accuracy.

2.
Sensors (Basel) ; 18(9)2018 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-30205625

RESUMEN

In Global navigation satellite system (GNSS) data processing, integer ambiguity acceptance test is considered as a challenging problem. A number of ambiguity acceptance tests have been proposed from different perspective and then unified into the integer aperture estimation (IA) framework. Among all the IA estimators, the optimal integer aperture (OIA) achieves the highest success rate with the fixed failure rate tolerance. However, the OIA is of less practical appealing due to its high computation complexity. On the other hand, the popular discrimination tests employ only two integer candidates, which are the essential reason for their sub-optimality. In this study, a generalized difference test (GDT) is proposed to exploit the benefit of including three or more integer candidates to improve their performance from theoretical perspective. The simulation results indicate that the third best integer candidates contribute to more than 70% success rate improvement for integer bootstrapping success rate higher than 0.8 case. Therefore, the GDT with three integer candidates (GDT3) achieves a good trade-off between the performance and computation burden. The threshold function is also applied for rapid determination of the fixed failure rate (FF)-threshold for GDT3. The performance improvement of GDT3 is validated with real GNSS data set. The numerical results indicate that GDT3 achieves higher empirical success rate while the empirical failure rate remains comparable. In a 20 km baseline test, the success rate GDT3 increase 7% with almost the same empirical failure rate.

3.
Sensors (Basel) ; 18(11)2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441781

RESUMEN

A low Earth orbiter (LEO)-based navigation signal augmentation system is considered as a complementary of current global navigation satellite systems (GNSS), which can accelerate precise positioning convergence, strengthen the signal power, and improve signal quality. Wuhan University is dedicated to LEO-based navigation signal augmentation research and launched one scientific experimental satellite named Luojia-1A. The satellite is capable of broadcasting dual-frequency band ranging signals over China. The initial performance of the Luojia-1A satellite navigation augmentation system is assessed in this study. The ground tests indicate that the phase noise of the oscillator is sufficiently low to support the intended applications. The field ranging tests achieve 2.6 m and 0.013 m ranging precision for the pseudorange and carrier phase measurements, respectively. The in-orbit test shows that the internal precision of the ephemeris is approximate 0.1 m and the clock stability is 3 × 10-10. The pseudorange and carrier phase measurement noise evaluated from the geometry-free combination is about 3.3 m and 1.8 cm. Overall, the Luojia-1A navigation augmentation system is capable of providing useable LEO navigation augmentation signals with the empirical user equivalent ranging error (UERE) no worse than 3.6 m, which can be integrated with existing GNSS to improve the real-time navigation performance.

4.
Sensors (Basel) ; 17(12)2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29292761

RESUMEN

After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to "see" which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas.

5.
Sensors (Basel) ; 18(1)2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-29301236

RESUMEN

The solid Earth deforms elastically in response to variations of surface atmosphere, hydrology, and ice/glacier mass loads. Continuous geodetic observations by Global Positioning System (CGPS) stations and Gravity Recovery and Climate Experiment (GRACE) record such deformations to estimate seasonal and secular mass changes. In this paper, we present the seasonal variation of the surface mass changes and the crustal vertical deformation in the South China Block (SCB) identified by GPS and GRACE observations with records spanning from 1999 to 2016. We used 33 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs) in SCB. The average weighted root-mean-square (WRMS) reduction is 38% when we subtract GRACE-modeled vertical displacements from GPS time series. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution in and around the South China Block. The correlation between GRACE and GPS time series is analyzed which provides a reference for further improvement of the seasonal variation of CGPS time series. The results of the GRACE observations inversion are the surface deformations caused by the surface mass change load at a rate of about -0.4 to -0.8 mm/year, which is used to improve the long-term trend of non-tectonic loads of the GPS vertical velocity field to further explain the crustal tectonic movement in the SCB and surroundings.

6.
Sensors (Basel) ; 17(9)2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28885547

RESUMEN

Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

7.
Sensors (Basel) ; 16(8)2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27490550

RESUMEN

Surface vertical deformation includes the Earth's elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE) mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 µGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA) contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

8.
Sensors (Basel) ; 15(10): 26096-114, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26473882

RESUMEN

Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations.

9.
Sci Rep ; 7: 45348, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28349926

RESUMEN

The ongoing collision between the Indian plate and the Eurasian plate brings up N-S crustal shortening and thickening of the Tibet Plateau, but its dynamic mechanisms remain controversial yet. As one of the most tectonically active regions of the world, South-Eastern Tibet (SET) has been greatly paid attention to by many geoscientists. Here we present the latest three-dimensional GPS velocity field to constrain the present-day tectonic process of SET, which may highlight the complex vertical crustal deformation. Improved data processing strategies are adopted to enhance the strain patterns throughout SET. The crustal uplifting and subsidence are dominated by regional deep tectonic dynamic processes. Results show that the Gongga Shan is uplifting with 1-1.5 mm/yr. Nevertheless, an anomalous crustal uplifting of ~8.7 mm/yr and negative horizontal dilation rates of 40-50 nstrain/yr throughout the Longmenshan structure reveal that this structure is caused by the intracontinental subduction of the Yangtze Craton. The Xianshuihe-Xiaojiang fault is a major active sinistral strike-slip fault which strikes essentially and consistently with the maximum shear strain rates. These observations suggest that the upper crustal deformation is closely related with the regulation and coupling of deep material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA