Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G166-G178, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383412

RESUMEN

Obesity can lead to impairments in hepatic glucose and insulin homeostasis, and although exercise is an effective treatment, the molecular targets remain incompletely understood. As IL-6 is an exercise-inducible cytokine, we aimed to identify whether IL-6 itself influences hepatic glucose and insulin homeostasis and whether this response differs during obesity. In vivo, male mice were fed a low-fat diet (LFD; 10% kcal) or a high-fat diet (HFD; 60% kcal) for 7 wk, which induced obesity and hepatic lipid accumulation. LFD- and HFD-fed mice were injected with IL-6 (400 ng, 75 min) or PBS and then with insulin (1 U/kg; ~15 min) or saline, at which point livers were collected. In both LFD- and HFD-fed mice, IL-6 decreased blood glucose and mRNA expression of gluconeogenic genes alongside increased phosphorylation of AKT in comparison to PBS controls, and this occurred without changes in circulating insulin. To determine whether this effect of IL-6 was directly on the liver, we completed in vitro isolated primary hepatocyte experiments from chow-fed mice and cultured with or without exposure to free fatty acid (250 µm palmitate and 250 µm oleate, 24 h) to induce lipid accumulation. In both control and free fatty acid-treated hepatocytes, IL-6 (20 ng/ml, 75 min) slightly attenuated insulin-stimulated (10 nM; ~15 min) AKT phosphorylation. Together, these data suggest that IL-6 may lead to improvements in indices of hepatic glucose and insulin homeostasis in vivo; however, this is likely due to an indirect effect on the hepatocyte. NEW & NOTEWORTHY In this study, we used lean and obese mice and found that a single injection of IL-6 improved glucose tolerance, decreased hepatic gluconeogenic gene expression, and increased hepatic phosphorylation of AKT. In primary hepatocytes cultured under control and lipid-laden conditions, IL-6 had a mild, but deleterious, effect on phosphorylation of AKT. Our results show that the beneficial effects of IL-6 on glucose and insulin homeostasis, in vivo, are maintained in obesity.


Asunto(s)
Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Interleucina-6/farmacocinética , Animales , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Interleucina-6/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
2.
Physiol Genomics ; 50(5): 355-368, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29521600

RESUMEN

The gut microbiome plays a critical role in the onset and progression of obesity and the metabolic syndrome. However, it is not well documented whether the cecal vs. the fecal microbiome is more relevant when assessing their contributions to these diseases. Here, we amplified the V4 region of the 16S rRNA gene from cecal and fecal samples of female Ossabaw swine fed a low-fat control diet (10.5% fat, n = 4) or Western diet (43.0% fat, 17.8% high fructose corn syrup, 2% cholesterol; n = 3) for 36 wk. Obesity significantly lowered alpha-diversity ( P < 0.05), and there was clear separation in beta-diversity between lean and obese pigs, as well as between cecal and fecal samples ( P < 0.05). Obesity dramatically increased ( P < 0.05) the Firmicutes:Bacteroidetes ratio in fecal samples, and Actinobacteria was higher ( P < 0.05) in fecal vs. cecal samples in obese pigs. Cyanobacteria, Proteobacteria, and Fusobacteria were increased ( P < 0.05), while Spirochaetes, Tenericutes, and Verrucomicrobia were decreased ( P < 0.05) in obese vs. lean pigs. Prevotellaceae was reduced ( P < 0.05) in obese fecal vs. cecal samples. Moreover, cecal samples in obese had greater ( P < 0.05) predicted metabolic capacity for glycan biosynthesis and metabolism and LPS biosynthesis compared with fecal. Obese pigs also had greater ( P < 0.05) capacity for carbohydrate metabolism, which was driven by obese fecal rather than cecal samples and was opposite in lean pigs ( P < 0.05). The observed differences in pro-inflammatory microbiota and their metabolic capacity in cecal vs. fecal samples of obese pigs provide new insight into evaluating the microbiome in the pathogenesis of obesity and metabolic disease.


Asunto(s)
Ciego/microbiología , Heces/microbiología , Microbiota/fisiología , Obesidad/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Dieta Alta en Grasa/efectos adversos , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Microbiota/genética , Obesidad/etiología , Dinámica Poblacional , ARN Ribosómico 16S/genética , Porcinos
3.
Physiol Genomics ; 49(8): 385-399, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28600319

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with prevalence rates that are on the rise in the US and worldwide. NAFLD encompasses a spectrum of liver pathologies including simple steatosis to nonalcoholic steatohepatitis (NASH) with inflammation and fibrosis. The gut microbiome has emerged as a potential therapeutic target in combating metabolic diseases including obesity, Type 2 diabetes, and NAFLD/NASH. Diet-induced obesity/Western style diet feeding causes severe microbial dysbiosis initiating a microbiome signature that promotes metabolite production that directly impacts hepatic metabolism. Changes in lifestyle (i.e., diet, exercise, and aerobic fitness) improve NAFLD outcomes and can significantly influence the microbiome. However, directly linking lifestyle-induced remodeling of the microbiome to NAFLD pathogenesis is not well understood. Understanding the reshaping of the microbiome and the metabolites produced and their subsequent actions on hepatic metabolism are vital in understanding the gut-liver axis. In this review, we 1) discuss microbiome-derived metabolites that significantly contribute to the gut-liver axis and are directly linked to NAFLD/NASH and 2) present evidence on lifestyle modifications reshaping the microbiome and the potential therapeutic aspects in combating the disease.


Asunto(s)
Estilo de Vida , Microbiota/fisiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/fisiopatología , Microbioma Gastrointestinal/fisiología , Humanos , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
4.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G166-79, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288420

RESUMEN

Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that rats with a low capacity for running (LCR) that were fed an acute high-fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with rats that were highly aerobically fit with a high capacity for running (HCR). Here, we tested the hypothesis that poor physiological outcomes in LCR rats following acute HFD feeding are associated with alterations in cecal microbiota. LCR rats exhibited greater body weight, feeding efficiency, 3 days of body weight change, and liver triglycerides after acute HFD feeding compared with HCR rats. Furthermore, compared with HCR rats, LCR rats exhibited reduced expression of intestinal tight junction proteins. Cecal bacterial 16S rDNA revealed that LCR rats had reduced cecal Proteobacteria compared with HCR rats. Microbiota of HCR rats consisted of greater relative abundance of Desulfovibrionaceae and unassigned genera within this family, suggesting increased reduction of endogenous mucins and proteins. Although feeding rats an acute HFD led to reduced Firmicutes in both strains, short-chain fatty acid-producing Phascolarctobacterium was reduced in LCR rats. In addition, Ruminococcae and Ruminococcus were negatively correlated with energy intake in the LCR/HFD rats. Predicted metagenomic function suggested that LCR rats had a greater capacity to metabolize carbohydrate and energy compared with HCR rats. Overall, these data suggest that the populations and metabolic capacity of the microbiota in low-aerobically fit LCR rats may contribute to their susceptibility to acute HFD-induced hepatic steatosis and poor physiologic outcomes.


Asunto(s)
Bacterias/metabolismo , Ciego/microbiología , Dieta Alta en Grasa , Tolerancia al Ejercicio , Microbioma Gastrointestinal , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Carbohidratos de la Dieta/metabolismo , Modelos Animales de Enfermedad , Ingestión de Energía , Metabolismo Energético , Tolerancia al Ejercicio/genética , Ácidos Grasos/metabolismo , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Fenotipo , Ratas Endogámicas , Carrera , Factores de Tiempo , Triglicéridos/metabolismo , Aumento de Peso
5.
J Nutr ; 145(12): 2781-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26491118

RESUMEN

BACKGROUND: Dietary fiber intake leading to short-chain fatty acid (SCFA) production could be a strategy to combat intermittent bouts of inflammation during ulcerative colitis. OBJECTIVE: Our objective was to evaluate dietary potato fiber (PF) in attenuating inflammation using a dextran sodium sulfate (DSS)-induced colitis mouse model. We hypothesized that PF would show anti-inflammatory effects compared with cellulose due in part to SCFA production. METHODS: Male C57Bl/6J mice were fed diets containing either 8% cellulose or 14.5% PF for a 22-d feeding study. Starting on study day 14, mice were provided either distilled water (control) or 2% (wt:vol) DSS in drinking water for 5 d (cellulose+control, n = 17; PF+control, n = 16; cellulose+DSS, n = 17; and PF+DSS, n = 16). Body weights and food and water intakes were collected daily from day 14 through day 22. Distal colon tissue was analyzed for histologic outcomes and changes in gene expression, and cecal contents were analyzed for SCFA concentrations. Data were analyzed by ANOVA, with repeated measures applied where necessary. RESULTS: At day 5 post-DSS induction, cellulose+DSS mice exhibited a 2% reduction (P < 0.05) in body weight compared with PF+DSS and PF+ and cellulose+control mice. PF+DSS mice had greater (P < 0.05) cecal butyrate concentrations [24.5 µmol/g dry matter (DM)] than did cellulose+DSS mice (4.93 µmol/g DM). Mice fed PF+DSS had lower (P < 0.05) infiltration of leukocytes in the distal colon than did mice fed cellulose+DSS (mean histology scores of 1.22 and 2.30, respectively). Furthermore, mice fed cellulose+DSS exhibited 1.42, 11.5, 8.48, and 35.5 times greater (P < 0.05) colon mRNA expression of tumor necrosis factor α (Tnfa) and interleukin (Il) 1b, Il6, and Il17a, respectively, and 7.10 times greater (P < 0.05) expression of C-X-C motif ligand 1 (Cxc1) compared with mice fed PF+DSS. CONCLUSIONS: These results suggest that PF fed to mice before and during DSS colitis attenuates inflammation, potentially through SCFA production; however, future studies are needed to understand the role of dietary fiber intake and immune activation.


Asunto(s)
Colitis/prevención & control , Colitis/fisiopatología , Fibras de la Dieta/administración & dosificación , Fermentación , Inflamación/prevención & control , Solanum tuberosum , Animales , Antiinflamatorios , Celulosa/administración & dosificación , Colitis/inducido químicamente , Colon/química , Sulfato de Dextran/administración & dosificación , Dieta , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/biosíntesis , Interleucina-17/genética , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/análisis , Factor de Necrosis Tumoral alfa/genética
6.
Br J Nutr ; 113(1): 125-33, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25418803

RESUMEN

Inclusion of fermentable fibres in the diet can have an impact on the hindgut microbiome and provide numerous health benefits to the host. Potato fibre (PF), a co-product of potato starch isolation, has a favourable chemical composition of pectins, resistant and digestible starch, cellulose, and hemicelluloses. The objective of the present study was to evaluate the effect of increasing dietary PF concentrations on the faecal microbiome of healthy adult dogs. Fresh faecal samples were collected from ten female dogs with hound bloodlines (6·13 (SEM 0·17) years; 22·0 (SEM 2·1) kg) fed five test diets containing graded concentrations of PF (0, 1·5, 3, 4·5 or 6% as-fed; Roquette Frères) in a replicated 5 × 5 Latin square design. Extraction of DNA was followed by amplification of the V4-V6 variable region of the 16S rRNA gene using barcoded primers. Sequences were classified into taxonomic levels using Basic Local Alignment Search Tool (BLASTn) against a curated GreenGenes database. Inclusion of PF increased (P< 0·05) the faecal proportions of Firmicutes, while those of Fusobacteria decreased (P< 0·05). Similar shifts were observed at the genus level and were confirmed by quantitative PCR (qPCR) analysis. With increasing concentrations of PF, faecal proportions of Faecalibacterium increased (P< 0·05). Post hoc Pearson's correlation analysis showed positive (P< 0·05) correlations with Bifidobacterium spp. and butyrate production and Lactobacillus spp. concentrations. Overall, increases in the proportion of Faecalibacterium (not Lactobacillus/Bifidobacterium, as confirmed by qPCR analysis) and faecal SCFA concentrations with increasing dietary PF concentrations suggest that PF is a possible prebiotic fibre.


Asunto(s)
Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Perros/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Solanum tuberosum/química , Animales , Bifidobacterium/aislamiento & purificación , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Heces/química , Femenino , Fermentación , Firmicutes/aislamiento & purificación , Fusobacterias/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Prebióticos/administración & dosificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación
7.
J Proteome Res ; 13(5): 2534-42, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24628373

RESUMEN

Nontargeted metabolomics analyses were used (1) to compare fecal metabolite profiles of healthy breast-fed (BF) and formula-fed (FF) infants before and during in vitro fermentation in batch culture and (2) to evaluate fecal metabolomics in assessing infant diet. Samples from healthy BF (n = 4) or FF (n = 4) infants were individually incubated at 37( °)C in anaerobic media containing 1% (wt/vol) galactooligosaccharides, 6'-sialyllactose, 2'-fucosyllactose, lacto-N-neotetraose, inulin, and gum arabic for up to 6 h, and supernatants were analyzed using GC/MS and LC/MS/MS to assess changes in various compounds. Comparison of over 250 metabolites prior to incubation showed that BF samples contained higher relative concentrations (P ≤ 0.05) of 14 compounds including human milk oligosaccharides and other metabolites presumably transferred through breast feeding (linoelaidate, myo-inositol) (P ≤ 0.05). Conversely, feces from FF infants contained 41 identified metabolites at higher levels (P ≤ 0.05) with many indicative of carbon limitation and protein fermentation. Our data are consistent with the notion that carbon-limited cultures catabolize protein and amino acids to obtain energy, whereas the provision of fermentable carbohydrate creates anabolic conditions relying on amino acids for bacterial growth. Results also suggest that fecal metabolomics can be a useful tool for studying interactions among diet, microbes, and host.


Asunto(s)
Lactancia Materna , Heces/química , Fermentación , Fórmulas Infantiles/administración & dosificación , Metabolómica/métodos , Técnicas de Cultivo Celular por Lotes/métodos , Heces/microbiología , Galactosa/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Goma Arábiga/metabolismo , Humanos , Lactante , Inulina/metabolismo , Lactosa/análogos & derivados , Lactosa/metabolismo , Oligosacáridos/metabolismo , Trisacáridos/metabolismo
8.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38850274

RESUMEN

For over six decades, nutritional science has provided well-developed, peer-reviewed nutrient recommendations to support the health of dogs and cats. These guidelines are updated based on new scientifically valid research and appropriate peer-review. Recent regulatory and scientific positions around health issues have resulted in strong opinions and desires for rapid regulatory action surrounding mineral nutrition, but with limited and conflicting scientific evidence. Pet Food Institute nutrition experts have come together to jointly author an article on the complexities of establishing mineral tolerances of dogs and cats to illustrate the limitations in defining mineral tolerances. This discussion covers how mineral requirements were determined, including the opportunities and pitfalls encountered. Scientific councils must review and clarify any proposed changes in conducting mineral nutrition research that might impact complete and balanced foods and surrounding regulations. It is important to clarify the multiple issues in mineral nutrition research and the necessity for thorough evaluation of data while avoiding arbitrary and potentially harmful guidelines.


Dogs and cats are living longer and healthier lives due, in part, to the scientific development of nutritional information. This information has allowed the building of many new types of foods, treats, and supplements that promote life, health, and enjoyment by the pet. There are several organizations that have provided helpful reviews of nutritional data through scientific councils that help identify safe and healthy criteria for all pet food products. These are readily available for those who want to learn more about pet nutrition. For many nutrients, there is a large database of information to help build products. Nutrients that are called macro- or micro-/trace minerals (e.g., sodium, potassium, zinc, copper, etc.) often have more limited information. Recently, strong opinions about pet health as related to mineral nutrition have been shared and robustly communicated without adequate scientific research to support the hypotheses. This has led to misinformation, concerns, and fear. To safeguard the health of companion animals and provide assistance to regulatory bodies regarding the nutritional welfare of dogs and cats, scientific panels have come together from industry, government, and academia to review, approve, and challenge nutritional guidelines. This overview provides the reader context into the rigor needed to establish safe mineral tolerances for dogs and cats.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Minerales , Animales , Perros/fisiología , Gatos/fisiología , Alimentación Animal/análisis , Necesidades Nutricionales , Dieta/veterinaria
9.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36373401

RESUMEN

Previously, a Saccharomyces cerevisiae fermentation product (SCFP) was shown to positively alter fecal microbiota, fecal metabolites, oxidative stress, and circulating immune cell function of adult dogs. The objective of this study was to measure the effects of SCFP on fecal characteristics, serum oxidative stress biomarkers, and whole blood gene expression of dogs undergoing transport stress. Sixteen adult pointer dogs [8M, 8F; mean age = 6.7 ± 2.1 yr; mean body weight (BW) = 25.5 ± 3.9 kg] were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to a control or SCFP-supplemented diet (formulated to include approximately 0.13% of the active SCFP ingredient) and fed to maintain BW for 11 wk. A 6-wk washout preceded the second 11-wk experimental period with dogs receiving opposite treatments. After 11 wk, fresh fecal and blood samples were collected before and after transport in a van for 45 min. Change from baseline data (i.e., before and after transport) were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. Change in serum malondialdehyde concentrations increased (P < 0.05) and serum 8-isoprostane concentrations tended to increase (P < 0.10) in dogs fed SCFP, but decreased (P < 0.05) in control dogs after transport. Other serum markers were unaffected by diet during transport stress. Fecal dry matter percentage tended to be affected (P < 0.10) by diet during transport stress, being reduced in control dogs, but stable in dogs fed SCFP. Other fecal characteristics were unaffected by diet during transport stress. Genes associated with activation of innate immunity were impacted by diet in response to transport stress, with blood cyclooxygenase-2 and malondialdehyde mRNA expression being increased (P < 0.05) in control dogs, but stable or decreased in dogs fed SCFP. Expression of other genes was unaffected by diet during transport stress. These data suggest that the benefits of feeding a SCFP during transport stress may be mediated through suppression of innate immune cell activation.


Saccharomyces cerevisiae fermentation product (SCFP) is a yeast product containing bioactive fermentation metabolites, residual yeast cells, and yeast cell wall fragments. In this study, SCFP was investigated for its impacts on fecal characteristics and oxidative stress of dogs undergoing transport stress. Using a randomized crossover study design, 16 adult pointer dogs were used to compare changes in fecal characteristics, oxidative stress marker concentrations, and gene expression when fed a SCFP-supplemented diet or control diet. After transport, change in serum malondialdehyde concentrations increased and serum 8-isoprostane concentrations tended to increase in dogs fed SCFP, but decreased in control dogs. Fecal moisture percentage tended to be affected by diet during transport stress, being reduced in control dogs, but stable in dogs fed SCFP. Blood cyclooxygenase-2 and myeloperoxidase mRNA gene expression was affected by diet during transport stress, being increased in control dogs, but stable or decreased in dogs fed SCFP. In conclusion, these data suggest that the benefits of feeding a SCFP during transport stress may be mitigated through suppression of innate immune cell activation rather than through suppressing oxidative damage to lipids.


Asunto(s)
Lactancia , Saccharomyces cerevisiae , Femenino , Perros , Animales , Saccharomyces cerevisiae/metabolismo , Fermentación , Lactancia/fisiología , Alimentación Animal/análisis , Dieta/veterinaria , Heces , Peso Corporal , Estrés Oxidativo , Expresión Génica
10.
Animals (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36230284

RESUMEN

We evaluated effects of dietary ground flaxseed on fecal and serum alpha-linolenic acid (ALA) concentrations, nutrient digestibility, and stool quality in female and male adult cats (n = 20 (8 males, 12 females); 3.95 ± 1.49 years of age (mean ± SD); 3.88 ± 0.82 kg BW). We hypothesized that adding ground flaxseed would increase serum ALA compared with feeding no flax, without changing nutrient digestibility. Cats were fed as-is 2.6% added-flaxseed (flax, n = 10) or no-flax (control, n = 10) diets (2.66 vs. 0.78% ALA of total fatty acids; crude protein 35%, fat 20%, fiber 3% as-fed) twice daily to maintain body weight for 28 days. Fecal collections were conducted on days 23−27 for total-tract nutrient digestibility, stool quality (scale 1−5; 1 = watery diarrhea, 5 = hard, dry, crumbly) and long-chain fatty acid (LCFA) analyses. Blood was collected on days 0, 14, and 28 for serum LCFA and chemistry analysis. Digestibility and fecal data were analyzed by ANOVA (SAS v9.4, Cary, NC, USA) and a repeated measures ANOVA for serum ALA. Flax-fed cats, compared with control-fed, had greater (p < 0.05) serum ALA after 14 days (4.00 vs. 0.71 µg/mL) and 28 days (7.83 and 3.67 µg/mL). No differences were observed in stool quality, and dry matter, protein, fat, and ALA digestibility. However, metabolizable energy was greater in the flax vs. control diet (4.18 vs. 3.91 kcal/g; p < 0.05). Overall, these data demonstrate that ground flaxseed added to cat diets increases serum ALA within 14 days, with no detriments to nutrient digestibility. We conclude that flaxseed can be used as a bioavailable source of ALA in cat diets.

11.
J Anim Sci ; 100(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044986

RESUMEN

Feeding Saccharomyces cerevisiae fermentation product (SCFP) has previously altered fecal microbiota, fecal metabolites, and immune function of adult dogs. The objective of this study was to investigate measures of skin and coat health, changes in circulating immune cell numbers and activity, antioxidant status, and oxidative stress marker concentrations of healthy adult dogs fed a SCFP-supplemented extruded diet. Sixteen adult English Pointer dogs (8 M, 8 F; mean age = 6.7 ± 2.1 yr; mean BW = 25.9 ± 4.5 kg) were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to either the control or SCFP-supplemented diet (0.13% of active SCFP) and fed to maintain BW for 10 wk. A 6-wk washout preceded the second 10-wk experimental period with dogs receiving opposite treatments. After baseline/washout and treatment phases, skin and coat were scored, and pre and postprandial blood samples were collected. Transepidermal water loss (TEWL), hydration status, and sebum concentrations were measured (back, inguinal, ear) using external probes. Oxidative stress and immune cell function were measured by ELISA, circulating immune cell percentages were analyzed by flow cytometry, and mRNA expression of oxidative stress genes was analyzed by RT-PCR. Change from baseline data was analyzed using the Mixed Models procedure of SAS 9.4. Sebum concentration changes tended to be higher (P < 0.10; inguinal, ear) in SCFP-fed dogs than in controls. TEWL change was lower (P < 0.05) on the back of controls, but lower (P = 0.054) on the ear of SCFP-fed dogs. Delayed-type hypersensitivity response was affected by diet and time post-inoculation. Other skin and coat measures and scores were not affected by diet. Changes in unstimulated lymphocytes and stimulated IFN-γ secreting T cells were lower (P < 0.05) in SCFP-fed dogs, while changes in stimulated T cells were lower (P < 0.05) in control-fed dogs. Upon stimulation, the percentage of cytotoxic T cells delta trended lower (P < 0.10) in SCFP-fed dogs. Change in serum superoxide dismutase concentrations was higher (P < 0.05) and change in catalase mRNA expression was lower (P < 0.05) in SCFP-fed dogs. All other measurements of immune cell populations, oxidative stress markers, and gene expression were unaffected by treatment. In conclusion, our data suggest that SCFP positively impacts indicators of skin and coat health of dogs, modulates immune responses, and enhances some antioxidant defense markers.


Saccharomyces cerevisiae fermentation product (SCFP) is a yeast product containing bioactive fermentation metabolites, residual yeast cells, and yeast cell wall fragments. In this study, SCFP was investigated for its impacts on immune health, oxidative stress, and skin and hair coat health in dogs. Using a randomized crossover study design, 16 adult pointer dogs were used to compare changes in immune cell numbers and activity, antioxidant status and oxidative stress marker concentrations, and skin and coat health markers when fed a SCFP-supplemented diet or control diet. Skin sebum concentrations increased in dogs fed SCFP, but transepidermal water loss changes depended on body location (ear, inguinal, or back). Delayed-type hypersensitivity response was affected by diet and time. Changes in unstimulated lymphocytes and stimulated IFN-γ secreting T cells were lower in SCFP-fed dogs, while changes in stimulated T cells were lower in control dogs. Changes in stimulated cytotoxic T cells tended to be lower in SCFP-fed dogs. Change in serum superoxide dismutase concentrations were higher, while change in catalase mRNA expression was lower in SCFP-fed dogs. In conclusion, our data suggest that SCFP positively impacts indicators of skin and coat health of dogs, modulates immune responses, and enhances some key antioxidant defense markers.


Asunto(s)
Dieta , Saccharomyces cerevisiae , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Dieta/veterinaria , Perros , Fermentación , Estrés Oxidativo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Br J Nutr ; 106 Suppl 1: S85-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22005441

RESUMEN

The objective of the present study was to utilise an accurate canine pedometer methodology and to assess the relationship between activity and body condition score (BCS) in dogs. Initial methodology validation used videography and pedometer step measurements to assess actual steps taken in comparison with pedometer readings for twenty large, medium and small dogs. During the validation, dogs considered to be medium or large breed showed no significant difference between pedometer readings and actual steps taken. A total of seventy-seven obese and non-obese dogs over 35 cm (14 inches) shoulder height and over 10 kg were recruited from a dog obesity clinic and a community sample to assess daily walking activity. Body condition scoring and pedometer steps were assessed on three separate weeks during a 10-week period. During the activity monitoring, daily step counts ranged from 5555 to 39 970 steps/d among the seventy-seven medium and large dogs. Dogs' BCS were inversely correlated with average daily steps (Spearman's ρ = - 0.442, P < 0.0001). The present study identified a significant inverse correlation between daily walking steps and BCS over a range from 4 to 9 out of 9 (P < 0.0001).


Asunto(s)
Enfermedades de los Perros/metabolismo , Ergometría/veterinaria , Monitoreo Ambulatorio/veterinaria , Obesidad/veterinaria , Condicionamiento Físico Animal , Caminata , Animales , Perros , Ergometría/instrumentación , Obesidad/metabolismo , Factores de Tiempo
13.
J Anim Sci ; 99(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34962977

RESUMEN

A study investigating the use of a nonviable Lactobacillus acidophilus (NVL: Culbac; TransAgra, Storm Lake, IA) and a mixed prebiotic (MP) blend (beet pulp, fructooligosaccharide (FOS), mannanoligosaccharide (MOS), inulin, and kelp) was done to evaluate changes in fecal microbiota, fermentative end products, and gut immune health in healthy female and male adult Beagle dogs (n = 24; 5.74 ± 2.18 yr; 9.30 ± 1.32 kg). The study protocol was first approved by the facility's Institutional Animal Care and Use Committee (Summit Ridge Farms; Susquehanna, PA) and followed throughout. Each of four test diets (control, NVL, MP, and MP + NVL [formulated to crude protein 25%, crude fat 14%, crude fiber 10% as-fed]) was fed once daily to maintain body weight for 21 d in a randomized-crossover design (four treatment periods and four washout periods). Fecal samples were collected on days 0 and 21 only for immunoglobulin A (IgA) and microbiota evaluation (16S rRNA V4 region and qPCR for Escherichia coli and Bifidobacterium), and fecal fermentative end-products and fecal pH were assessed only on day 21. Over the test periods, apparent total tract nutrient digestibility and stool quality were assessed. Data were analyzed by ANOVA (SAS v9.4, Cary, NC) or Kruskal-Wallis for between-diet effects, and paired t-test or Wilcoxon for time effects. Statistical significance was set at P ≤ 0.05. Apparent total tract nutrient digestibility revealed feeding MP-containing diets resulted in lower (P < 0.05) crude protein and fat digestibility vs. control and NVL diets. When dogs were fed MP, they had lower (P < 0.05) fecal pH compared with control and NVL diets, whereas fecal pH was lower in (P < 0.05) MP + NVL- vs. NVL-fed dogs. Fecal E. coli was (P < 0.05) lower at day 21 vs. day 0 when dogs were fed MP. Fecal Fusobacterium spp. was lower (P < 0.05) in both MP diets vs. control. Fecal Lactobacillus spp. increased (P < 0.05) from baseline with MP. Both diets with MP elicited greater (P < 0.05) fecal acetate and propionate concentration vs. control diet. At day 21, fecal IgA was greater (P < 0.05) in MP and MP + NVL compared with NVL diet. Only when dogs were fed MP did they have increased (P < 0.05) fecal IgA from day 21 vs. day 0. The MP + NVL diet decreased (P < 0.05) fecal isovalerate, isobutyrate, phenol, and indole vs. control. Overall, the MP elicited the most changes on microbiota, fermentative end-products, and IgA. Further investigation into NVL's gut health benefits is warranted.


Asunto(s)
Microbiota , Prebióticos , Alimentación Animal/análisis , Animales , Digestión , Perros , Escherichia coli , Femenino , Inmunoglobulina A , Lactobacillus acidophilus , Masculino , ARN Ribosómico 16S/genética
14.
J Nutr Biochem ; 46: 125-136, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28605664

RESUMEN

Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy vs. dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Male OLETF rats were randomized to "Western" diets containing milk protein isolate (MPI), soy protein isolate (SPI) or 50:50 MPI/SPI (MS) (n=9-10/group; 21% kcal protein) for 16 weeks. SPI attenuated (P<.05) fat mass and percent fat by ~10% compared with MS, but not compared with MPI. Serum thiobarbituric acid reactive substance and total and low-density lipoprotein cholesterol concentrations were lower (P<.05) with dietary SPI vs. MPI and MS. Histological hepatic steatosis was lower (P<.05) in SPI compared with MPI or MS. Lipidomic analyses revealed reductions (P<.05) in hepatic diacylglycerols but not triacylglycerols in SPI compared with MPI, which was associated with lower hepatic de novo lipogenesis (ACC, FAS and SCD-1 protein content, and hepatic 16:1 n-7 and 18:1 n-7 PUFA concentrations) (P<.05) compared with MPI and MS; however, MPI displayed elevated hepatic mitochondrial function compared with SPI and MS. Fecal bacterial 16S rRNA analysis revealed SPI-intake elicited increases (P<.05) in Lactobacillus and decreases (P<.05) in Blautia and Lachnospiraceae suggesting decreases in fecal secondary bile acids in SPI rats. SPI and MS exhibited greater (P<.05) hepatic Fxr, Fgfr4, Hnf4a, HmgCoA reductase and synthase mRNA expression compared with MPI. Overall, dietary SPI compared with MPI decreased hepatic steatosis and diacylglycerols, changed microbiota populations and altered bile acid signaling and cholesterol homeostasis in a rodent model of obesity.


Asunto(s)
Dieta Occidental , Heces/microbiología , Microbioma Gastrointestinal , Proteínas de la Leche/farmacología , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Proteínas de Soja/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Íleon/fisiología , Hígado/metabolismo , Hígado/fisiopatología , Masculino , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/complicaciones , Obesidad/dietoterapia , Estrés Oxidativo , Ratas Endogámicas OLETF , Triglicéridos/metabolismo
15.
J Am Vet Med Assoc ; 240(4): 413-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22309013

RESUMEN

OBJECTIVE: To quantify physical activity and dietary energy intake in dogs enrolled in a controlled weight-loss program and assess relationships between energy intake and physical activity, sex, age, body weight, and body condition score (BCS). DESIGN: Prospective clinical study. ANIMALS: 35 client-owned obese dogs (BCS > 7/9). PROCEDURES: Dogs were fed a therapeutic diet with energy intake restrictions to maintain weight loss of approximately 2%/wk. Collar-mounted pedometers were used to record the number of steps taken daily as a measure of activity. Body weight and BCS were assessed at the beginning of the weight-loss program and every 2 weeks thereafter throughout the study. Relationships between energy intake and sex, age, activity, BCS, and body weight at the end of the study were assessed via multivariable linear regression. Variables were compared among dogs stratified post hoc into inactive and active groups on the basis of mean number of steps taken (< or > 7,250 steps/d, respectively). RESULTS: Mean ± SD daily energy intake per unit of metabolic body weight (kg(0.75)) of active dogs was significantly greater than that of inactive dogs (53.6 ± 15.2 kcal/kg(0.75) vs 42.2 ± 9.7 kcal/kg(0.75), respectively) while maintaining weight-loss goals. In regression analysis, only the number of steps per day was significantly associated with energy intake. CONCLUSIONS AND CLINICAL RELEVANCE: Increased physical activity was associated with higher energy intake while maintaining weight-loss goals. Each 1,000-step interval was associated with a 1 kcal/kg(0.75) increase in energy intake.


Asunto(s)
Enfermedades de los Perros/terapia , Ingestión de Energía/fisiología , Obesidad/veterinaria , Condicionamiento Físico Animal , Pérdida de Peso , Animales , Composición Corporal/fisiología , Dieta Reductora/veterinaria , Perros , Femenino , Masculino , Obesidad/terapia , Estudios Prospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA