Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 161(3): 581-594, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910209

RESUMEN

Understanding how functional lipid domains in live cell membranes are generated has posed a challenge. Here, we show that transbilayer interactions are necessary for the generation of cholesterol-dependent nanoclusters of GPI-anchored proteins mediated by membrane-adjacent dynamic actin filaments. We find that long saturated acyl-chains are required for forming GPI-anchor nanoclusters. Simultaneously, at the inner leaflet, long acyl-chain-containing phosphatidylserine (PS) is necessary for transbilayer coupling. All-atom molecular dynamics simulations of asymmetric multicomponent-membrane bilayers in a mixed phase provide evidence that immobilization of long saturated acyl-chain lipids at either leaflet stabilizes cholesterol-dependent transbilayer interactions forming local domains with characteristics similar to a liquid-ordered (lo) phase. This is verified by experiments wherein immobilization of long acyl-chain lipids at one leaflet effects transbilayer interactions of corresponding lipids at the opposite leaflet. This suggests a general mechanism for the generation and stabilization of nanoscale cholesterol-dependent and actin-mediated lipid clusters in live cell membranes.


Asunto(s)
Proteínas Ligadas a Lípidos/metabolismo , Actinas/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Cricetulus , Glicosilfosfatidilinositoles/metabolismo , Simulación de Dinámica Molecular , Fosfatidilserinas/metabolismo
2.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37106230

RESUMEN

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Asunto(s)
Lípidos , Proteínas de la Membrana , Espectrometría de Masas/métodos , Transporte Biológico , Lípidos/química , Proteínas de la Membrana/química , Membrana Dobles de Lípidos/química
3.
Proc Natl Acad Sci U S A ; 120(34): e2309516120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590407

RESUMEN

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.


Asunto(s)
Diglicéridos , Vesículas Sinápticas , Humanos , Exocitosis , Transmisión Sináptica , Sinaptotagminas , Vesícula
4.
J Cell Sci ; 128(17): 3330-44, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26203165

RESUMEN

Many membrane receptors activate phospholipase C (PLC) during signalling, triggering changes in the levels of several plasma membrane lipids including phosphatidylinositol (PtdIns), phosphatidic acid (PtdOH) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. It is widely believed that exchange of lipids between the plasma membrane and endoplasmic reticulum (ER) is required to restore lipid homeostasis during PLC signalling, yet the mechanism remains unresolved. RDGBα (hereafter RDGB) is a multi-domain protein with a PtdIns transfer protein (PITP) domain (RDGB-PITPd). We find that, in vitro, the RDGB-PITPd binds and transfers both PtdOH and PtdIns. In Drosophila photoreceptors, which experience high rates of PLC activity, RDGB function is essential for phototransduction. We show that binding of PtdIns to RDGB-PITPd is essential for normal phototransduction; however, this property is insufficient to explain the in vivo function because another Drosophila PITP (encoded by vib) that also binds PtdIns cannot rescue the phenotypes of RDGB deletion. In RDGB mutants, PtdIns(4,5)P2 resynthesis at the plasma membrane following PLC activation is delayed and PtdOH levels elevate. Thus RDGB couples the turnover of both PtdIns and PtdOH, key lipid intermediates during G-protein-coupled PtdIns(4,5)P2 turnover.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Fototransducción/fisiología , Proteínas de la Membrana/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Ácidos Fosfatidicos/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfolipasas de Tipo C/genética
5.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405833

RESUMEN

The intricate molecular environment of the native membrane profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergent-like molecules that disrupt and remove this vital local membrane context. This severely impedes our ability to quantitatively decipher the local molecular context and comprehend its regulatory role in the structure, function, and biogenesis of MPs. Using a library of membrane-active polymers we have developed a platform for the high-throughput analysis of the membrane proteome. The platform enables near-complete spatially resolved extraction of target MPs directly from their endogenous membranes into native nanodiscs that maintain the local membrane context. We accompany this advancement with an open-access quantitative database that provides the most efficient extraction conditions of 2065 unique mammalian MPs. Our method enables rapid and near-complete extraction and purification of target MPs directly from their endogenous organellar membranes at physiological expression levels while maintaining the nanoscale local membrane environment. Going beyond the plasma membrane proteome, our platform enables extraction from any target organellar membrane including the endoplasmic reticulum, mitochondria, lysosome, Golgi, and even transient organelles such as the autophagosome. To further validate this platform we took several independent MPs and demonstrated how our resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, taking two synaptic vesicle MPs, we show how the database can be extended to capture multiprotein complexes between overexpressed MPs. We expect these publicly available resources to empower researchers across disciplines to capture membrane 'nano-scoops' containing a target MP efficiently and interface with structural, functional, and other bioanalytical approaches. We demonstrate an example of this by combining our extraction platform with single-molecule TIRF imaging to demonstrate how it can enable rapid determination of homo-oligomeric states of target MPs in native cell membranes.

6.
J Am Soc Mass Spectrom ; 34(9): 1917-1927, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37432128

RESUMEN

Native mass spectrometry (nMS) has emerged as a key analytical tool to study the organizational states of proteins and their complexes with both endogenous and exogenous ligands. Specifically, for membrane proteins, it provides a key analytical dimension to determine the identity of bound lipids and to decipher their effects on the observed structural assembly. We recently developed an approach to study membrane proteins directly from intact and tunable lipid membranes where both the biophysical properties of the membrane and its lipid compositions can be customized. Extending this, we use our liposome-nMS platform to decipher the lipid specificity of membrane proteins through their multiorganelle trafficking pathways. To demonstrate this, we used VAMP2 and reconstituted it in the endoplasmic reticulum (ER), Golgi, synaptic vesicle (SV), and plasma membrane (PM) mimicking liposomes. By directly studying VAMP2 from these customized liposomes, we show how the same transmembrane protein can bind to different sets of lipids in different organellar-mimicking membranes. Considering that the cellular trafficking pathway of most eukaryotic integral membrane proteins involves residence in multiple organellar membranes, this study highlights how the lipid-specificity of the same integral membrane protein may change depending on the membrane context. Further, leveraging the capability of the platform to study membrane proteins from liposomes with curated biophysical properties, we show how we can disentangle chemical versus biophysical properties, of individual lipids in regulating membrane protein assembly.


Asunto(s)
Liposomas , Lípidos de la Membrana , Lípidos de la Membrana/química , Liposomas/química , Proteína 2 de Membrana Asociada a Vesículas , Espectrometría de Masas
7.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333317

RESUMEN

Here we introduce the full functional reconstitution of genetically-validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca 2+ . Using this novel setup, we discover new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca 2+- triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca 2+ -dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of ready-release vesicles. Dynamic single-molecule imaging of Complexin binding to ready-release vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by Munc13 and Munc18 chaperones. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 'template' complex is a functional intermediate in the production of primed, ready-release vesicles, which requires the coordinated action of Munc13 and Munc18. SIGNIFICANCE STATEMENT: Munc13 and Munc18 are SNARE-associated chaperones that act as "priming" factors, facilitating the formation of a pool of docked, release-ready vesicles and regulating Ca 2+ -evoked neurotransmitter release. Although important insights into Munc18/Munc13 function have been gained, how they assemble and operate together remains enigmatic. To address this, we developed a novel biochemically-defined fusion assay which enabled us to investigate the cooperative action of Munc13 and Munc18 in molecular terms. We find that Munc18 nucleates the SNARE complex, while Munc13 promotes and accelerates the SNARE assembly in a DAG-dependent manner. The concerted action of Munc13 and Munc18 stages the SNARE assembly process to ensure efficient 'clamping' and formation of stably docked vesicles, which can be triggered to fuse rapidly (∼10 msec) upon Ca 2+ influx.

8.
J Vis Exp ; (181)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35311809

RESUMEN

The activation of phospholipase Cß (PLCß) is an essential step during sensory transduction in Drosophila photoreceptors. PLCß activity results in the hydrolysis of the membrane lipid phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] leading ultimately to the activation of transient receptor potential (TRP) and TRP like (TRPL) channels. The activity of PLCß also leads subsequently to the generation of many lipid species several of which have been proposed to play a role in TRP and TRPL activation. In addition, several classes of lipids have been proposed to play key roles in organizing the cell biology of photoreceptors to optimize signaling reactions for optimal sensory transduction. Historically, these discoveries have been driven by the ability to isolate Drosophila mutants for enzymes that control the levels of specific lipids and perform analysis of photoreceptor physiology in these mutants. More recently, powerful mass spectrometry methods for isolation and quantitative analysis of lipids with high sensitivity and specificity have been developed. These are particularly suited for use in Drosophila where lipid analysis is now possible from photoreceptors without the need for radionuclide labeling. In this article, the conceptual and practical considerations in the use of lipid mass spectrometry for the robust, sensitive, and accurate quantitative assessment of various signaling lipids in Drosophila photoreceptors are covered. Along with existing methods in molecular genetics and physiological analysis such lipid is likely to enhance the power of photoreceptors as a model system for discoveries in biology.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Espectrometría de Masas , Fosfatidilinositoles , Células Fotorreceptoras de Invertebrados/fisiología
9.
Front Cell Dev Biol ; 7: 83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231646

RESUMEN

Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.

10.
FEBS Lett ; 592(6): 962-972, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29427502

RESUMEN

In many eukaryotic signalling cascades, receptor-mediated phospholipase C (PLC) activity triggers phosphatidylinositol-4,5-bisphosphate (PIP2 ) hydrolysis, leading to information transfer. Coupled with PLC activation is a sequence of reactions spread across multiple compartments which resynthesize PIP2 , a process essential for supporting sustained PLC signalling. The biochemical strategies coordinating these reactions and, in particular, whether this is a closed cycle with no net addition or loss of metabolites, are poorly understood. Using mathematical models, we find that most closed PIP2 cycles cannot explain experimentally observed changes in key metabolic intermediates in particular mutants. Thus, we propose that the PIP2 cycle likely includes at least one metabolic source and one sink whose net activity results in the experimentally observed regulation of this key signalling pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Fosfatidilinositol 4,5-Difosfato/genética , Fosfolipasas de Tipo C/genética
11.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30369483

RESUMEN

Phosphatidylcholine (PC)-specific phospholipase D (PLD) hydrolyzes the phosphodiester bond of the PC to generate phosphatidic acid (PA) and regulates several subcellular functions. Mammalian genomes contain two genes encoding distinct isoforms of PLD in contrast with invertebrate genomes that include a single PLD gene. However, the significance of two genes within a genome encoding the same biochemical activity remains unclear. Recently, loss of function in the only PLD gene in Drosophila was reported to result in reduced PA levels and a PA-dependent collapse of the photoreceptor plasma membrane due to defects in vesicular transport. Phylogenetic analysis reveals that human PLD1 (hPLD1) is evolutionarily closer to dPLD than human PLD2 (hPLD2). In the present study, we expressed hPLD1 and hPLD2 in Drosophila and found that while reconstitution of hPLD1 is able to completely rescue retinal degeneration in a loss of function dPLD mutant, hPLD2 was less effective in its ability to mediate a rescue. Using a newly developed analytical method, we determined the acyl chain composition of PA species produced by each enzyme. While dPLD was able to restore the levels of most PA species in dPLD3.1 cells, hPLD1 and hPLD2 each were unable to restore the levels of a subset of unique species of PA. Finally, we found that in contrast with hPLD2, dPLD and hPLD1 are uniquely distributed to the subplasma membrane region in photoreceptors. In summary, hPLD1 likely represents the ancestral PLD in mammalian genomes while hPLD2 represents neofunctionalization to generate PA at distinct subcellular membranes.


Asunto(s)
Mutación con Pérdida de Función , Fosfolipasa D/genética , Degeneración Retiniana/genética , Animales , Línea Celular , Drosophila , Expresión Génica , Humanos , Fosfolipasa D/análisis , Fosfolipasa D/metabolismo , Filogenia , Degeneración Retiniana/metabolismo , Espectrometría de Masas en Tándem , Transgenes
12.
Elife ; 52016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27848911

RESUMEN

During illumination, the light-sensitive plasma membrane (rhabdomere) of Drosophila photoreceptors undergoes turnover with consequent changes in size and composition. However, the mechanism by which illumination is coupled to rhabdomere turnover remains unclear. We find that photoreceptors contain a light-dependent phospholipase D (PLD) activity. During illumination, loss of PLD resulted in an enhanced reduction in rhabdomere size, accumulation of Rab7 positive, rhodopsin1-containing vesicles (RLVs) in the cell body and reduced rhodopsin protein. These phenotypes were associated with reduced levels of phosphatidic acid, the product of PLD activity and were rescued by reconstitution with catalytically active PLD. In wild-type photoreceptors, during illumination, enhanced PLD activity was sufficient to clear RLVs from the cell body by a process dependent on Arf1-GTP levels and retromer complex function. Thus, during illumination, PLD activity couples endocytosis of RLVs with their recycling to the plasma membrane thus maintaining plasma membrane size and composition.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Endocitosis/efectos de la radiación , Fosfolipasa D/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Membrana Celular/efectos de la radiación , Membrana Celular/ultraestructura , Vesículas Citoplasmáticas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Expresión Génica , Prueba de Complementación Genética , Guanosina Trifosfato/metabolismo , Luz , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Estimulación Luminosa , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Células Fotorreceptoras de Invertebrados/ultraestructura , Rodopsina/genética , Rodopsina/metabolismo , Visión Ocular/fisiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA