Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Eng ; 79: 38-48, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392985

RESUMEN

Microbial overproduction of aromatic chemicals has gained considerable industrial interest and various metabolic engineering approaches have been employed in recent years to address the associated challenges. So far, most studies have used sugars (mostly glucose) or glycerol as the primary carbon source. In this study, we used ethylene glycol (EG) as the main carbon substrate. EG could be obtained from the degradation of plastic and cellulosic wastes. As a proof of concept, Escherichia coli was engineered to transform EG into L-tyrosine, a valuable aromatic amino acid. Under the best fermentation condition, the strain produced 2 g/L L-tyrosine from 10 g/L EG, outperforming glucose (the most common sugar feedstock) in the same experimental conditions. To prove the concept that EG can be converted into different aromatic chemicals, E. coli was further engineered with a similar approach to synthesize other valuable aromatic chemicals, L-phenylalanine and p-coumaric acid. Finally, waste polyethylene terephthalate (PET) bottles were degraded using acid hydrolysis and the resulting monomer EG was transformed into L-tyrosine using the engineered E. coli, yielding a comparable titer to that obtained using commercial EG. The strains developed in this study should be valuable to the community for producing valuable aromatics from EG.


Asunto(s)
Escherichia coli , Glicol de Etileno , Escherichia coli/genética , Escherichia coli/metabolismo , Glicol de Etileno/metabolismo , Ingeniería Metabólica/métodos , Glucosa/metabolismo , Tirosina/genética , Tirosina/metabolismo , Carbono/metabolismo , Fermentación
2.
Synth Syst Biotechnol ; 8(1): 79-85, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36514486

RESUMEN

Current agricultural practices heavily rely on the excessive application of synthetic pesticides and fertilizers to meet the food demands of the increasing global population. This practice has several drawbacks including its negative impact on the environment and human health. Recently, the use of natural products has gained interest as alternatives to these synthetic agrochemicals due to their selective working mechanisms and biodegradability. In order to efficiently produce these natural agrochemicals, engineering microorganisms is emerging as an increasingly viable approach, and it is anticipated that it will have a significant market share in the near future. This approach manipulates the metabolism of microbes to manufacture the desired natural compounds from low-cost starting materials. This review discusses recent examples of this approach. The produced natural products can serve as biopesticides or plant growth regulators for the sustainable improvement of plant growth and disease control. The challenges in further developing these strategies are also discussed.

3.
Curr Opin Biotechnol ; 73: 240-245, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34536659

RESUMEN

Engineering microbes to produce value-added chemicals from C6/C5 sugars sometimes requires long biosynthetic pathways, which causes carbon loss due to involving multiple metabolic branch nodes, leading to a lower product yield. Using C2 feedstocks derived from gaseous, cellulosic, and plastic wastes could establish shorter biosynthetic pathways to produce some target chemicals, for example, acetyl-CoA-derived natural products. Utilizing these waste-derived feedstocks would also contribute to reducing the carbon footprint of the chemical industry. In this review, we highlighted the promising waste-processing technologies that could provide C2 feedstocks that are compatible with microbial fermentation. We also analyzed the recent metabolic engineering works in which the microorganisms/fermentation processes were modified/optimized to utilize acetate, ethanol, or ethylene glycol more efficiently.


Asunto(s)
Etanol , Ingeniería Metabólica , Vías Biosintéticas , Fermentación , Azúcares
4.
Biomaterials ; 287: 121661, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35842981

RESUMEN

Agricultural biomass remains as one of the commonly found waste on Earth. Although valorisation of these wastes has been studied in detail, the fermentation-based processes still need improvement due to the high cost of hydrolysing enzymes, and the presence of growth inhibitors which constrains the fermentation to produce high-value products. To address these challenges, we developed an integrated process in this study combining abiotic- and bio-catalysis to produce l-tyrosine from corn husk. The first step involved a one-pot hydrolytic hydrogenation tandem reaction without the use of the expensive enzymes, which yielded a mixture of polyols and sugars. Without any purification, these crude hydrolysates can be almost completely utilized by an engineered Escherichia coli strain, which did not exhibit any growth inhibition. The strain produced 0.44 g/L l-tyrosine from 10 g/L crude corn husk hydrolysates, demonstrating the feasibility of converting agricultural biomass into a valuable aromatic amino acid via an integrated process.

5.
J Air Waste Manag Assoc ; 67(12): 1353-1363, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28945513

RESUMEN

In the present study, a modified approach was adopted to quantify the assimilative capacity (i.e., the maximum emission an area can take without violating the permissible pollutant standards) of a major industrial cluster (Manali, India) and to assess the effectiveness of adopted air pollution control measures at the region. Seasonal analysis of assimilative capacity was carried out corresponding to critical, high, medium, and low pollution levels to know the best and worst conditions for industrial operations. Bottom-up approach was employed to quantify sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (aerodynamic diameter <10 µm; PM10) emissions at a fine spatial resolution of 500 × 500 m2 in Manali industrial cluster. AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), an U.S. Environmental Protection Agency (EPA) regulatory model, was used for estimating assimilative capacity. Results indicated that 22.8 tonnes/day of SO2, 7.8 tonnes/day of NO2, and 7.1 tonnes/day of PM10 were emitted from the industries of Manali. The estimated assimilative capacities for SO2, NO2, and PM10 were found to be 16.05, 17.36, and 19.78 tonnes/day, respectively. It was observed that the current SO2 emissions were exceeding the estimated safe load by 6.7 tonnes/day, whereas PM10 and NO2 were within the safe limits. Seasonal analysis of assimilative capacity showed that post-monsoon had the lowest load-carrying capacity, followed by winter, summer, and monsoon seasons, and the allowable SO2 emissions during post-monsoon and winter seasons were found to be 35% and 26% lower, respectively, when compared with monsoon season. IMPLICATIONS: The authors present a modified approach for quantitative estimation of assimilative capacity of a critically polluted Indian industrial cluster. The authors developed a geo-coded fine-resolution PM10, NO2, and SO2 emission inventory for Manali industrial area and further quantitatively estimated its season-wise assimilative capacities corresponding to various pollution levels. This quantitative representation of assimilative capacity (in terms of emissions), when compared with routine qualitative representation, provides better data for quantifying carrying capacity of an area. This information helps policy makers and regulatory authorities to develop an effective mitigation plan for air pollution abatement.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/química , India , Industrias , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Estaciones del Año , Dióxido de Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA