Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cells ; 38(5): 613-623, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31916656

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule regulating organogenesis, angiogenesis, cell proliferation, and apoptosis. S1P is generated by sphingosine kinases (SPHK1 and SPHK2) through the phosphorylation of ceramide-derived sphingosine. Phenotypes caused by manipulating S1P metabolic enzymes and receptors suggested several possible functions for S1P in embryonic stem cells (ESCs), yet the mechanisms by which S1P and related sphingolipids act in ESCs are controversial. We designed a rigorous test to evaluate the requirement of S1P in murine ESCs by knocking out both Sphk1 and Sphk2 to create cells incapable of generating S1P. To accomplish this, we created lines mutant for Sphk2 and conditionally mutant (floxed) for Sphk1, allowing evaluation of ESCs that transition to double-null state. The Sphk1/2-null ESCs lack S1P and accumulate the precursor sphingosine. The double-mutant cells fail to grow due to a marked cell cycle arrest at G2/M. Mutant cells activate expression of telomere elongation factor genes Zscan4, Tcstv1, and Tcstv3 and display longer telomeric repeats. Adding exogenous S1P to the medium had no impact, but the cell cycle arrest is partially alleviated by the expression of a ceramide synthase 2, which converts excess sphingosine into ceramide. The results indicate that sphingosine kinase activity is essential in mouse ESCs for limiting the accumulation of sphingosine that otherwise drives cell cycle arrest.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos adversos , Animales , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Noqueados
2.
Proc Natl Acad Sci U S A ; 111(50): E5401-10, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25516983

RESUMEN

Patients with myeloproliferative neoplasms (MPNs) are at significant, cumulative risk of leukemic transformation to acute myeloid leukemia (AML), which is associated with adverse clinical outcome and resistance to standard AML therapies. We performed genomic profiling of post-MPN AML samples; these studies demonstrate somatic tumor protein 53 (TP53) mutations are common in JAK2V617F-mutant, post-MPN AML but not in chronic-phase MPN and lead to clonal dominance of JAK2V617F/TP53-mutant leukemic cells. Consistent with these data, expression of JAK2V617F combined with Tp53 loss led to fully penetrant AML in vivo. JAK2V617F-mutant, Tp53-deficient AML was characterized by an expanded megakaryocyte erythroid progenitor population that was able to propagate the disease in secondary recipients. In vitro studies revealed that post-MPN AML cells were sensitive to decitabine, the JAK1/2 inhibitor ruxolitinib, or the heat shock protein 90 inhibitor 8-(6-iodobenzo[d][1.3]dioxol-5-ylthio)-9-(3-(isopropylamino)propyl)-9H-purine-6-amine (PU-H71). Treatment with ruxolitinib or PU-H71 improved survival of mice engrafted with JAK2V617F-mutant, Tp53-deficient AML, demonstrating therapeutic efficacy for these targeted therapies and providing a rationale for testing these therapies in post-MPN AML.


Asunto(s)
Neoplasias Hematológicas/complicaciones , Janus Quinasa 2/genética , Leucemia Mieloide Aguda/genética , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/genética , Proteína p53 Supresora de Tumor/genética , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Benzodioxoles/farmacología , Western Blotting , Ensayo de Unidades Formadoras de Colonias , Decitabina , Exoma/genética , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/etiología , Ratones , Mutación Missense/genética , Nitrilos , Purinas/farmacología , Pirazoles/farmacología , Pirimidinas
3.
Elife ; 62017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28956531

RESUMEN

Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by sphingosine kinases (Sphk1 and Sphk2). We show that sphk2 maternal-zygotic mutant zebrafish embryos (sphk2MZ) display early developmental phenotypes, including a delay in epiboly, depleted S1P levels, elevated levels of sphingosine, and resistance to sphingosine toxicity. The sphk2MZ embryos also have strikingly increased levels of maternal transcripts encoding ceramide synthase 2b (Cers2b), and loss of Cers2b in sphk2MZ embryos phenocopies sphingosine toxicity. An upstream region of the cers2b promoter supports enhanced expression of a reporter gene in sphk2MZ embryos compared to wildtype embryos. Furthermore, ectopic expression of Cers2b protein itself reduces activity of the promoter, and this repression is relieved by exogenous sphingosine. Therefore, the sphk2MZ genome recognizes the lack of sphingosine kinase activity and up-regulates cers2b as a salvage pathway for sphingosine turnover. Cers2b can also function as a sphingolipid-responsive factor to mediate at least part of a feedback regulatory mechanism.


Asunto(s)
Homeostasis , Oxidorreductasas/metabolismo , Esfingosina/metabolismo , Pez Cebra/embriología , Animales , Regulación de la Expresión Génica
4.
Cancer Cell ; 27(4): 502-15, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25873173

RESUMEN

Specific combinations of acute myeloid leukemia (AML) disease alleles, including FLT3 and TET2 mutations, confer distinct biologic features and adverse outcome. We generated mice with mutations in Tet2 and Flt3, which resulted in fully penetrant, lethal AML. Multipotent Tet2(-/-);Flt3(ITD) progenitors (LSK CD48(+)CD150(-)) propagate disease in secondary recipients and were refractory to standard AML chemotherapy and FLT3-targeted therapy. Flt3(ITD) mutations and Tet2 loss cooperatively remodeled DNA methylation and gene expression to an extent not seen with either mutant allele alone, including at the Gata2 locus. Re-expression of Gata2 induced differentiation in AML stem cells and attenuated leukemogenesis. TET2 and FLT3 mutations cooperatively induce AML, with a defined leukemia stem cell population characterized by site-specific changes in DNA methylation and gene expression.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas/genética , Tirosina Quinasa 3 Similar a fms/genética , Antineoplásicos/uso terapéutico , Diferenciación Celular/genética , Citarabina/uso terapéutico , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Doxorrubicina/uso terapéutico , Factor de Transcripción GATA2/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Haploinsuficiencia , Mutación , Proteínas Proto-Oncogénicas/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
5.
J Exp Med ; 210(12): 2641-59, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24218140

RESUMEN

Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10-30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesis.


Asunto(s)
Anomalías Múltiples/etiología , Síndromes Mielodisplásicos/etiología , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Anomalías Múltiples/genética , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Dioxigenasas , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Eliminación de Gen , Mutación de Línea Germinal , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fenotipo , Embarazo , Unión Proteica , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/metabolismo
6.
Cancer Cell ; 22(2): 180-93, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22897849

RESUMEN

Recurrent somatic ASXL1 mutations occur in patients with myelodysplastic syndrome, myeloproliferative neoplasms, and acute myeloid leukemia, and are associated with adverse outcome. Despite the genetic and clinical data implicating ASXL1 mutations in myeloid malignancies, the mechanisms of transformation by ASXL1 mutations are not understood. Here, we identify that ASXL1 mutations result in loss of polycomb repressive complex 2 (PRC2)-mediated histone H3 lysine 27 (H3K27) tri-methylation. Through integration of microarray data with genome-wide histone modification ChIP-Seq data, we identify targets of ASXL1 repression, including the posterior HOXA cluster that is known to contribute to myeloid transformation. We demonstrate that ASXL1 associates with the PRC2, and that loss of ASXL1 in vivo collaborates with NRASG12D to promote myeloid leukemogenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Mutación/genética , Células Mieloides/patología , Proteínas Represoras/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Sistema Hematopoyético/metabolismo , Sistema Hematopoyético/patología , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Metilación , Ratones , Células Mieloides/metabolismo , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Regulación hacia Arriba/genética , Proteínas ras/metabolismo
7.
Cancer Cell ; 20(1): 11-24, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21723200

RESUMEN

Somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) gene occur in a significant proportion of patients with myeloid malignancies. Although there are extensive genetic data implicating TET2 mutations in myeloid transformation, the consequences of Tet2 loss in hematopoietic development have not been delineated. We report here an animal model of conditional Tet2 loss in the hematopoietic compartment that leads to increased stem cell self-renewal in vivo as assessed by competitive transplant assays. Tet2 loss leads to a progressive enlargement of the hematopoietic stem cell compartment and eventual myeloproliferation in vivo, including splenomegaly, monocytosis, and extramedullary hematopoiesis. In addition, Tet2(+/-) mice also displayed increased stem cell self-renewal and extramedullary hematopoiesis, suggesting that Tet2 haploinsufficiency contributes to hematopoietic transformation in vivo.


Asunto(s)
Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/deficiencia , Células Madre Hematopoyéticas/patología , Células Mieloides/patología , Proteínas Proto-Oncogénicas/deficiencia , Alelos , Animales , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Eliminación de Gen , Técnicas de Inactivación de Genes , Silenciador del Gen , Haploinsuficiencia/genética , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mielomonocítica Crónica/patología , Ratones , Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA