Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(20): e2307621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38111987

RESUMEN

Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.

2.
Small ; 19(35): e2301981, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37186376

RESUMEN

Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.


Asunto(s)
Materiales Biocompatibles , Poliésteres , Materiales Biocompatibles/química , Poliésteres/química , Temperatura , Cristalización
3.
Chem Rev ; 121(8): 4999-5041, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33787235

RESUMEN

Manipulation and navigation of micro and nanoswimmers in different fluid environments can be achieved by chemicals, external fields, or even motile cells. Many researchers have selected magnetic fields as the active external actuation source based on the advantageous features of this actuation strategy such as remote and spatiotemporal control, fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This review introduces fundamental concepts and advantages of magnetic micro/nanorobots (termed here as "MagRobots") as well as basic knowledge of magnetic fields and magnetic materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-breaking strategies for effective movement. These concepts are discussed to describe the interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of magnetic fields in other propulsion approaches, and magnetic stimulation of micro/nanorobots beyond motion are provided followed by fabrication techniques for (quasi-)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for the development of magnetically powered miniaturized motors are discussed.

4.
Small ; 18(25): e2107888, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35607749

RESUMEN

A great deal of research has focused on small-scale robots for biomedical applications and minimally invasive delivery of therapeutics (e.g., cells, drugs, and genes) to a target area. Conventional fabrication methods, such as two-photon polymerization, can be used to build sophisticated micro- and nanorobots, but the long fabrication cycle for a single microrobot has limited its practical use. This study proposes a biodegradable spherical gelatin methacrylate (GelMA) microrobot for mass production in a microfluidic channel. The proposed microrobot is fabricated in a flow-focusing droplet generator by shearing a mixture of GelMA, photoinitiator, and superparamagnetic iron oxide nanoparticles (SPIONs) with a mixture of oil and surfactant. Human nasal turbinate stem cells (hNTSCs) are loaded on the GelMA microrobot, and the hNTSC-loaded microrobot shows precise rolling motion in response to an external rotating magnetic field. The microrobot is enzymatically degraded by collagenase, and released hNTSCs are proliferated and differentiated into neuronal cells. In addition, the feasibility of the GelMA microrobot as a cell therapeutic delivery system is investigated by measuring electrophysiological activity on a multielectrode array. Such a versatile and fully biodegradable microrobot has the potential for targeted stem cell delivery, proliferation, and differentiation for stem cell-based therapy.


Asunto(s)
Gelatina , Metacrilatos , Sistemas de Liberación de Medicamentos/métodos , Humanos , Campos Magnéticos , Células Madre
5.
Small ; 18(33): e2203821, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867042

RESUMEN

2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures.


Asunto(s)
Molibdeno , Nanoestructuras , Disulfuros , Rayos Infrarrojos , Fototerapia/métodos
6.
Chem Rev ; 120(20): 11175-11193, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33054168

RESUMEN

During the last two decades, engineering motion with small-scale matter has received much attention in several areas of research, ranging from supramolecular chemistry and colloidal science to robotics and automation. The numerous discoveries and innovative concepts realized in motile micro- and nanostructures have converged in the field of small-scale swimmers. These man-made micro- and nanomachines can move in fluids by transforming different forms of energy to mechanical motion. Recently, metal-organic frameworks (MOFs), which are crystalline coordination polymers with high porosity, have been proposed as key building blocks in several small-scale swimmer designs. These materials possess the required features for motile micro- and nanodevices, such as high cargo-loading capacity, biodegradability, biocompatibility, and stimuli-responsiveness. In this review, we take a journey through the major breakthroughs and milestones realized in the area of MOF-based small-scale swimmers. First, a brief introduction to the field of small-scale swimmers is provided. Next, we review different strategies that have been reported for imparting motion to MOFs. Finally, we emphasize the incorporation of molecular machines into the MOF's architecture as the means to create highly integrated small-scale swimmers. The strategies and developments explored in this review pave the way toward the use of motile MOFs for a variety of applications in the fields of biomedicine, environmental remediation, and on-the-fly chemistry.

7.
Soft Matter ; 17(4): 1037-1047, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33289746

RESUMEN

Precise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms. We have previously exploited such colloids as shuttles for the microscale manipulation of objects. Here, we study the rolling motion of magnetically driven Janus colloids on solid substrates under the influence of an orthogonal external electric field. Electrically induced attractive interactions were used to tune the load on the Janus colloid and thereby the friction with the underlying substrate, leading to control over the forward velocity of the particle. Our experimental data suggest that the frictional coupling required to achieve translation, transitions from a hydrodynamic regime to one of mixed contact coupling with increasing load force. Based on this insight, we show that our colloidal microrobots can probe the local friction coefficient of various solid surfaces, which makes them potentially useful as tribological microsensors. Lastly, we precisely manipulate porous cargos using our colloidal rollers, a feat that holds promise for bio-analytical applications.

8.
Sensors (Basel) ; 21(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884118

RESUMEN

We present a system capable of providing visual feedback for ergometer training, allowing detailed analysis and gamification. The presented solution can easily upgrade any existing ergometer device. The system consists of a set of pedals with embedded sensors, readout electronics and wireless communication modules and a tablet device for interaction with the users, which can be mounted on any ergometer, transforming it into a full analytical assessment tool with interactive training capabilities. The methods to capture the forces and moments applied to the pedal, as well as the pedal's angular position, were validated using reference sensors and high-speed video capture systems. The mean-absolute error (MAE) for load is found to be 18.82 N, 25.35 N, 0.153 Nm for Fx, Fz and Mx respectively and the MAE for the pedal angle is 13.2°. A fully gamified experience of ergometer training has been demonstrated with the presented system to enhance the rehabilitation experience with audio visual feedback, based on measured cycling parameters.


Asunto(s)
Pie , Gamificación , Ciclismo , Gravitación
9.
Sensors (Basel) ; 21(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921846

RESUMEN

The deterioration of gait can be used as a biomarker for ageing and neurological diseases. Continuous gait monitoring and analysis are essential for early deficit detection and personalized rehabilitation. The use of mobile and wearable inertial sensor systems for gait monitoring and analysis have been well explored with promising results in the literature. However, most of these studies focus on technologies for the assessment of gait characteristics, few of them have considered the data acquisition bandwidth of the sensing system. Inadequate sampling frequency will sacrifice signal fidelity, thus leading to an inaccurate estimation especially for spatial gait parameters. In this work, we developed an inertial sensor based in-shoe gait analysis system for real-time gait monitoring and investigated the optimal sampling frequency to capture all the information on walking patterns. An exploratory validation study was performed using an optical motion capture system on four healthy adult subjects, where each person underwent five walking sessions, giving a total of 20 sessions. Percentage mean absolute errors (MAE%) obtained in stride time, stride length, stride velocity, and cadence while walking were 1.19%, 1.68%, 2.08%, and 1.23%, respectively. In addition, an eigenanalysis based graphical descriptor from raw gait cycle signals was proposed as a new gait metric that can be quantified by principal component analysis to differentiate gait patterns, which has great potential to be used as a powerful analytical tool for gait disorder diagnostics.


Asunto(s)
Análisis de la Marcha , Zapatos , Adulto , Envejecimiento , Marcha , Humanos , Caminata
10.
J Am Chem Soc ; 142(7): 3540-3547, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986022

RESUMEN

Covalent organic frameworks (COFs) are commonly synthesized under harsh conditions yielding unprocessable powders. Control in their crystallization process and growth has been limited to studies conducted in hazardous organic solvents. Herein, we report a one-pot synthetic method that yields stable aqueous colloidal solutions of sub-20 nm crystalline imine-based COF particles at room temperature and ambient pressure. Additionally, through the combination of experimental and computational studies, we investigated the mechanisms and forces underlying the formation of such imine-based COF colloids in water. Further, we show that our method can be used to process the colloidal solution into 2D and 3D COF shapes as well as to generate a COF ink that can be directly printed onto surfaces. These findings should open new vistas in COF chemistry, enabling new application areas.


Asunto(s)
Estructuras Metalorgánicas/síntesis química , Agua/química , Aldehídos/química , Derivados del Benceno/química , Biomimética/métodos , Coloides/síntesis química , Coloides/química , Cristalización , Iminas/síntesis química , Iminas/química , Micelas , Tamaño de la Partícula
11.
Chem Soc Rev ; 48(5): 1236-1254, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30671579

RESUMEN

Surface-based assays are increasingly being used in biology and medicine, which in turn demand increasing quantitation and reproducibility. This translates into more stringent requirements on the patterning of biological entities on surfaces (also referred to as biopatterning). This tutorial focuses on mass transport in the context of existing and emerging biopatterning technologies. We here develop a step-by-step analysis of how analyte transport affects surface kinetics, and of the advantages and limitations this entails in major categories of patterning methods, including evaporating sessile droplets, laminar flows in microfluidics or electrochemistry. Understanding these concepts is key to obtaining the desired pattern uniformity, coverage, analyte usage or processing time, and equally applicable to surface assays. A representative technological review accompanies each section, highlighting the technical progress enabled by transport control in e.g. microcontact printing, inkjet printing, dip-pen nanolithography and microfluidic probes. We believe this tutorial will serve researchers to better understand available patterning methods/principles, optimize conditions and to help design protocols/assays. By highlighting fundamental challenges and available approaches, we wish to trigger the development of new surface patterning methods and assays.


Asunto(s)
Bioimpresión/instrumentación , Ácidos Nucleicos Inmovilizados/química , Proteínas Inmovilizadas/química , Dispositivos Laboratorio en un Chip , Animales , Bioimpresión/métodos , Difusión , Diseño de Equipo , Humanos , Cinética , Procedimientos Analíticos en Microchip/métodos , Propiedades de Superficie
12.
Small ; 15(34): e1900709, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31304653

RESUMEN

Untethered small-scale robots have great potential for biomedical applications. However, critical barriers to effective translation of these miniaturized machines into clinical practice exist. High resolution tracking and imaging in vivo is one of the barriers that limit the use of micro- and nanorobots in clinical applications. Here, the inclusion of radioactive compounds in soft thermoresponsive magnetic microrobots is investigated to enable their single-photon emission computed tomography imaging. Four microrobotic platforms differing in hydrogel structure and four 99m Tc[Tc]-based radioactive compounds are investigated in order to achieve optimal contrast agent retention and optimal imaging. Single microrobot imaging of structures as low as 100 µm in diameter, as well as tracking of shape switching from tubular to planar configurations by inclusion of 99m Tc[Tc] colloid in the hydrogel structure, is reported.


Asunto(s)
Microtecnología , Robótica , Tomografía Computarizada de Emisión de Fotón Único , Fotograbar/instrumentación , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X
13.
Small ; 15(16): e1805006, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30829003

RESUMEN

Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small-scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template-assisted electrodeposition in 3D-printed micromolds is presented. The 3D molds are fabricated using a modified two-photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of "conventional 3D printed helical microswimmers." The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.


Asunto(s)
Hierro/química , Campos Magnéticos , Microtecnología/métodos , Impresión Tridimensional/instrumentación , Robótica/instrumentación , Materiales Biocompatibles , Electroquímica , Galvanoplastia , Células HCT116 , Humanos , Hidrógeno/química , Imanes , Microfluídica , Robótica/métodos , Propiedades de Superficie
14.
Angew Chem Int Ed Engl ; 58(38): 13550-13555, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31309662

RESUMEN

Metal-organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small-scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one-step synthetic procedure, that is, without the incorporation of extrinsic magnetic components. The ferrimagnetism of the composite originates from binary oxides of iron and transition metals such as cobalt. This approach exhibits similarities to the natural mineralization of iron oxide species, as is observed in ores and in biomineralization.

15.
Nanotechnology ; 29(40): 405502, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29998847

RESUMEN

Recent advances in nanorobotic manipulation of ferromagnetic nanowires bring new avenues for applications in the biomedical area, such as targeted drug delivery, diagnostics or localized surgery. However, probing a single nanowire and monitoring its dynamics remains a challenge since it demands high precision sensing, high-resolution imaging, and stable operations in fluidic environments. Here, we report on a novel method of imaging and sensing magnetic fields from a single ferromagnetic nanowire with an atomic-scale sensor in diamond, i.e. diamond nitrogen-vacancy (NV) defect center. The distribution of static magnetic fields around a single Co nanowire is mapped out by spatially distributed NV centers and the obtained image is further compared with numerical simulation for quantitative analysis. DC field measurements such as continuous-wave ODMR and Ramsey sequence are used in the paper and sub Gauss level of field sensing is demonstrated. By imaging magnetic fields at a single nanowire level, this work represents an important step toward tracking and probing of ferromagnetic nanowires in biomedical applications.

16.
Nano Lett ; 16(8): 4968-74, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27459382

RESUMEN

Recent studies have garnered considerable interest in the field of propulsion to maneuver micro- and nanosized objects. Acoustics provide an alternate and attractive method to generate propulsion. To date, most acoustic-based swimmers do not use structural resonances, and their motion is determined by a combination of bulk acoustic streaming and a standing-wave field. The resultant field is intrinsically dependent on the boundaries of their resonating chambers. Though acoustic based propulsion is appealing in biological contexts, existing swimmers are less efficient, especially when operating in vivo, since no predictable standing-wave can be established in a human body. Here we describe a new class of nanoswimmer propelled by the small-amplitude oscillation of a flagellum-like flexible tail in standing and, more importantly, in traveling acoustic waves. The artificial nanoswimmer, fabricated by multistep electrodeposition techniques, compromises a rigid bimetallic head and a flexible tail. During acoustic excitation of the nanoswimmer the tail structure oscillates, which leads to a large amplitude propulsion in traveling waves. FEM simulation results show that the structural resonances lead to high propulsive forces.

17.
Small ; 12(46): 6363-6369, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27690370

RESUMEN

Ferromagnetic nanowires are finding use as untethered sensors and actuators for probing micro- and nanoscale biophysical phenomena, such as for localized sensing and application of forces and torques on biological samples, for tissue heating through magnetic hyperthermia, and for microrheology. Quantifying the magnetic properties of individual isolated nanowires is crucial for such applications. Dynamic cantilever magnetometry is used to measure the magnetic properties of individual sub-500 nm diameter polycrystalline nanowires of Ni and Ni80 Co20 fabricated by template-assisted electrochemical deposition. The values are compared with bulk, ensemble measurements when the nanowires are still embedded within their growth matrix. It is found that single-particle and ensemble measurements of nanowires yield significantly different results that reflect inter-nanowire interactions and chemical modifications of the sample during the release process from the growth matrix. The results highlight the importance of performing single-particle characterization for objects that will be used as individual magnetic nanoactuators or nanosensors in biomedical applications.


Asunto(s)
Magnetometría/métodos , Nanotecnología/métodos , Nanocables/química , Imanes/química
18.
Nano Lett ; 15(7): 4829-33, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26029795

RESUMEN

Micro- and nanorobots operating in low Reynolds number fluid environments require specialized swimming strategies for efficient locomotion. Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis. This work demonstrates for the first time planar undulations of composite multilink nanowire-based chains (diameter 200 nm) induced by a planar-oscillating magnetic field. Those chains comprise an elastic eukaryote-like polypyrrole tail and rigid magnetic nickel links connected by flexible polymer bilayer hinges. The multilink design exhibits a high swimming efficiency. Furthermore, the manufacturing process enables tuning the geometrical and material properties to specific applications.

19.
Phys Chem Chem Phys ; 17(20): 13274-9, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25920767

RESUMEN

Soft-magnetic core-multishell Fe@C NWs-AAO nanocomposites were synthesized using anodization, electrodeposition and low-pressure chemical vapour deposition (CVD) at 900 °C. High chemical and mechanical stability is achieved by the conversion from amorphous to θ- and δ-Al2O3 phases above 600 °C. Moreover, the surface properties of the material evolve from bioactive, for porous AAO, to bioinert, for Fe@C NW filled AAO nanocomposite. Although the latter is not cytotoxic, cells do not adhere onto the surface of the magnetic nanocomposite, thus proving its anti-biofouling character.


Asunto(s)
Óxido de Aluminio/química , Incrustaciones Biológicas/prevención & control , Carbono/química , Hierro/química , Imanes/química , Nanocompuestos/química , Nanocables/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Estabilidad de Medicamentos , Propiedades de Superficie , Temperatura , Volatilización
20.
Small ; 10(7): 1284-8, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24339330

RESUMEN

Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment.


Asunto(s)
Galvanoplastia/instrumentación , Galvanoplastia/métodos , Imagenología Tridimensional , Fenómenos Magnéticos , Robótica/instrumentación , Robótica/métodos , Flagelos/metabolismo , Flagelos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA