Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Food Technol Biotechnol ; 56(4): 455-463, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30923443

RESUMEN

Inflammatory bowel diseases are a group of chronic inflammatory conditions that affect gastrointestinal tract due to inapt and continuous immune activation in response to a myriad of predisposing factors (most notably genetics, environmental impact and gut microbiota composition). It has been shown that vitamin D status can also play a role in the disease pathogenesis, as its deficiency is commonly observed in two major forms of inflammatory bowel diseases - Crohn's disease and ulcerative colitis. Mounting evidence supports the concept of intricate relationship between gut dysbiosis and vitamin D metabolism, while suboptimal levels of this vitamin have been linked to increased clinical disease relapse rates, inadequate response to drugs, as well as decreased quality of life in patients with Crohn's disease and ulcerative colitis. Consequently, the pertinent question is whether increased vitamin D supplementation and (on a population level) food fortification may bring significant benefit to the affected individuals. In this short review we discuss the synthesis, functions, status and food sources of vitamin D, appraise biotechnological facets of vitamin D status analysis and food fortification, and concentrate on novel developments in the field that describe its influence on intestinal microbiota and inflammatory bowel disease.

2.
Int J Mol Sci ; 17(4)2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27104515

RESUMEN

The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD), a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT) and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal , Helmintos/fisiología , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/parasitología , Enfermedades Inflamatorias del Intestino/terapia , Fenómenos Fisiológicos de la Nutrición , Prebióticos , Probióticos/uso terapéutico , Simbióticos
3.
Gut Microbes ; 14(1): 2083419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35695669

RESUMEN

The knowledge on how gut microbes contribute to the inflammatory bowel disease (IBD) at the onset of disease is still scarce. We compared gut microbiota in newly diagnosed, treatment-naïve adult IBD (Crohn's disease (CD) and ulcerative colitis (UC)) to irritable bowel syndrome (IBS) patients and healthy group. Mucosal and fecal microbiota of 49 patients (13 UC, 10 CD, and 26 IBS) before treatment initiation, and fecal microbiota of 12 healthy subjects was characterized by 16S rRNA gene sequencing. Mucosa was sampled at six positions, from terminal ileum to rectum. We demonstrate that mucosal microbiota is spatially homogeneous, cannot be differentiated based on the local inflammation status and yet provides bacterial footprints superior to fecal in discriminating disease phenotypes. IBD groups showed decreased bacterial diversity in mucosa at all taxonomic levels compared to IBS. In CD and UC, Dialister was significantly increased, and expansion of Haemophilus and Propionibacterium characterized UC. Compared to healthy individuals, fecal microbiota of IBD and IBS patients had increased abundance of Proteobacteria, Enterobacteriaceae, in particular. Shift toward reduction of Adlercreutzia and butyrate-producing taxa was found in feces of IBD patients. Microbiota alterations detected in newly diagnosed treatment-naïve adult patients indicate that the microbiota changes are set and detectable at the disease onset and likely have a discerning role in IBD pathophysiology. Our results justify further investigation of the taxa discriminating between disease groups, such as H. parainfluenzae, R. gnavus, Turicibacteriaceae, Dialister, and Adlercreutzia as potential biomarkers of the disease.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Síndrome del Colon Irritable , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , ARN Ribosómico 16S/genética
4.
Materials (Basel) ; 12(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893951

RESUMEN

The main goal of this study was the formation of bone tissue using dexamethasone (DEX)-loaded [COCH3]-RADARADARADARADA-[CONH2] (RADA 16-I) scaffold that has the ability to release optimal DEX concentration under perfusion force. Bone-marrow samples were collected from three patients during a hip arthroplasty. Human mesenchymal stem cells (hMSCs) were isolated and propagated in vitro in order to be seeded on scaffolds made of DEX-loaded RADA 16-I hydrogel in a perfusion bioreactor. DEX concentrations were as follows: 4 × 10-3, 4 × 10-4 and 4 × 10-5 M. After 21 days in a perfusion bioreactor, tissue was analyzed by scanning electron microscopy (SEM) and histology. Markers of osteogenic differentiation were quantified by real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Minerals were quantified and detected by the von Kossa method. In addition, DEX release from the scaffold in a perfusion bioreactor was assessed. The osteoblast differentiation was confirmed by the expression analysis of osteoblast-related genes (alkaline phosphatase (ALP), collagen I (COL1A1) and osteocalcin (OC). The hematoxylin/eosin staining confirmed the presence of cells and connective tissue, while SEM revealed morphological characteristics of cells, extracellular matrix and minerals-three main components of mature bone tissue. Immunocytochemical detection of collagen I is in concordance with given results, supporting the conclusion that scaffold with DEX concentration of 4 × 10-4 M has the optimal engineered tissue morphology. The best-engineered bone tissue is produced on scaffold loaded with 4 × 10-4 M DEX with a perfusion rate of 0.1 mL/min for 21 days. Differentiation of hMSCs on DEX-loaded RADA 16-I scaffold under perfusion force has a high potential for application in regenerative orthopedics.

5.
Sci Rep ; 8(1): 5143, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572539

RESUMEN

The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.


Asunto(s)
ADN Bacteriano , Heces/microbiología , Microbioma Gastrointestinal , Bacterias Grampositivas , Secuenciación de Nucleótidos de Alto Rendimiento , Manejo de Especímenes/métodos , Adulto , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Bacterias Grampositivas/química , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/genética , Bacterias Grampositivas/aislamiento & purificación , Humanos , Masculino , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA