Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 43(14): 2527-2536, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868855

RESUMEN

A common observation in fMRI studies using the BOLD signal is that older adults, compared with young adults, show overactivations, particularly during less demanding tasks. The neuronal underpinnings of such overactivations are not known, but a dominant view is that they are compensatory in nature and involve recruitment of additional neural resources. We scanned 23 young (20-37 years) and 34 older (65-86 years) healthy human adults of both sexes with hybrid positron emission tomography/MRI. The radioligand [18F]fluoro-deoxyglucose was used to assess dynamic changes in glucose metabolism as a marker of task-dependent synaptic activity, along with simultaneous fMRI BOLD imaging. Participants performed two verbal working memory (WM) tasks: one involving maintenance (easy) and one requiring manipulation (difficult) of information in WM. Converging activations to the WM tasks versus rest were observed for both imaging modalities and age groups in attentional, control, and sensorimotor networks. Upregulation of activity to WM-demand, comparing the more difficult to the easier task, also converged between both modalities and age groups. For regions in which older adults showed task-dependent BOLD overactivations compared with the young adults, no corresponding increases in glucose metabolism were found. To conclude, findings from the current study show that task-induced changes in the BOLD signal and synaptic activity as measured by glucose metabolism generally converge, but overactivations observed with fMRI in older adults are not coupled with increased synaptic activity, which suggests that these overactivations are not neuronal in origin.SIGNIFICANCE STATEMENT Findings of increased fMRI activations in older compared with younger adults have been suggested to reflect increased use of neuronal resources to cope with reduced brain function. The physiological underpinnings of such compensatory processes are poorly understood, however, and rest on the assumption that vascular signals accurately reflect neuronal activity. Comparing fMRI and simultaneously acquired functional positron emission tomography as an alternative index of synaptic activity, we show that age-related overactivations do not appear to be neuronal in origin. This result is important because mechanisms underlying compensatory processes in aging are potential targets for interventions aiming to prevent age-related cognitive decline.


Asunto(s)
Imagen por Resonancia Magnética , Memoria a Corto Plazo , Masculino , Femenino , Adulto Joven , Humanos , Anciano , Memoria a Corto Plazo/fisiología , Imagen por Resonancia Magnética/métodos , Envejecimiento/fisiología , Cognición/fisiología , Glucosa , Encéfalo
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34193521

RESUMEN

The finding of reduced functional MRI (fMRI) activity in the default mode network (DMN) during externally focused cognitive control has been highly influential to our understanding of human brain function. However, these negative fMRI responses, measured as relative decreases in the blood-oxygenation-level-dependent (BOLD) response between rest and task, have also prompted major questions of interpretation. Using hybrid functional positron emission tomography (PET)-MRI, this study shows that task-positive and -negative BOLD responses do not reflect antagonistic patterns of synaptic metabolism. Task-positive BOLD responses in attention and control networks were accompanied by concomitant increases in glucose metabolism during cognitive control, but metabolism in widespread DMN remained high during rest and task despite negative BOLD responses. Dissociations between glucose metabolism and the BOLD response specific to the DMN reveal functional heterogeneity in this network and demonstrate that negative BOLD responses during cognitive control should not be interpreted to reflect relative increases in metabolic activity during rest. Rather, neurovascular coupling underlying BOLD response patterns during rest and task in DMN appears fundamentally different from BOLD responses in other association networks during cognitive control.


Asunto(s)
Red en Modo Predeterminado/metabolismo , Glucosa/metabolismo , Imagen por Resonancia Magnética , Oxígeno/sangre , Tomografía de Emisión de Positrones , Adulto , Atención/fisiología , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Masculino , Análisis y Desempeño de Tareas , Adulto Joven
3.
J Neurosci Res ; 100(6): 1296-1320, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35293013

RESUMEN

Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain's structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20-80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11 C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11 C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.


Asunto(s)
Envejecimiento Cognitivo , Conectoma , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cognición/fisiología , Dopamina , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Estudios Prospectivos
4.
Front Psychol ; 14: 1172552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333579

RESUMEN

Objectives: Loneliness is a major public health concern. Duration of loneliness is associated with severity of health outcomes, and further research is needed to direct interventions and social policy. This study aimed to identify predictors of the onset vs. the maintenance of loneliness in older adults before and during the pandemic using longitudinal data from the Survey of Health, Age, and Retirement in Europe (SHARE). Methods: Groupings of persistent, situational, and no loneliness were based on self-reports from an ordinary pre-pandemic SHARE wave and a peri-pandemic telephone interview. Predictors were identified and compared in three hierarchical binary regression analyses, with independent variables added in blocks of geographic region, demographics, pre-pandemic social network, pre-pandemic health, pandemic-related individual, and country level variables. Results: Self-reported loneliness levels for the persistent, situational, and no loneliness groups were stable and distinct through 7 years preceding the pre-pandemic baseline measure. Shared predictors were chronic diseases, female sex, depression, and no cohabitant partner. Persistent loneliness was uniquely predicted by low network satisfaction (OR: 2.04), functional limitations (OR: 1.40), and a longer country-level isolation period for older adults (OR: 1.24). Conclusion: Interventions may target persons with depression, functional limitations, chronic health issues, and no cohabitant partner. The added burden of the length of isolation on those who are already lonely should be taken into account when employing social policies that target older adults. Further research should distinguish between situational and persistent loneliness, and seek to identify predictors of chronic loneliness onset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA