Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741939

RESUMEN

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxina Tetánica , Animales , Toxina Tetánica/genética , Toxina Tetánica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Unión Proteica , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética
2.
Phytother Res ; 37(2): 410-423, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36114804

RESUMEN

The present study aims to investigate the cognition-enhancing effect of 3, 14, 19-Triacetyl andrographolide (ADA) on learning and memory deficits in 3 × Tg-AD mice and to explore its underlying mechanism. Eight-month-old 3 × Tg-AD mice and C57BL/6J mice were randomly divided into three groups, namely wild-type group, 3 × Tg-AD group, and 3 × Tg-AD+ADA group (5 mg/kg, for 21 days, i.p.). We found that ADA significantly improved learning and cognition impairment, inhibited the loss of Nissl body, and reduced Aß load in the brains of 3 × Tg-AD mice. In addition, ADA enhanced the levels of PSD95 and SYP, which were closely associated with synaptic plasticity. Accumulated autophagosomes, LC3II, and P62 in hippocampus and cortex of 3 × Tg-AD mice were decreased by ADA treatment. Furthermore, ADA administration further down-regulated the expressions of p-AKT and p-mTOR, reduced the level of CTSB, and increased the co-localization of LC3 and LAMP1 in the brains of 3 × Tg-AD mice, implying that ADA-induced autophagy initiation and also promoted the degradation process. In Aß25-35 -induced HT22 cells, ADA displayed similar effects on autophagy flux as observed in 3 × Tg-AD mice. Our finding verified that ADA could improve synaptic plasticity and cognitive function, which is mainly attributed to the key roles of ADA in autophagy induction and degradation.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Autofagia , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
3.
Angew Chem Int Ed Engl ; 62(2): e202211550, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36336656

RESUMEN

Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent ß-amyloid (Aß) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aß fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aß fibrosis and promotes fibril disassembly, thereby attenuating Aß-induced neurotoxicity. DNTPH treatment significantly reduced Aß plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aß plaques and AD therapy simultaneously.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Medicina de Precisión , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Imagen Óptica/métodos
4.
Acta Pharmacol Sin ; 43(4): 840-849, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34267346

RESUMEN

Luteolin is a flavonoid in a variety of fruits, vegetables, and herbs, which has shown anti-inflammatory, antioxidant, and anti-cancer neuroprotective activities. In this study, we investigated the potential beneficial effects of luteolin on memory deficits and neuroinflammation in a triple-transgenic mouse model of Alzheimer's disease (AD) (3 × Tg-AD). The mice were treated with luteolin (20, 40 mg · kg-1 · d-1, ip) for 3 weeks. We showed that luteolin treatment dose-dependently improved spatial learning, ameliorated memory deficits in 3 × Tg-AD mice, accompanied by inhibiting astrocyte overactivation (GFAP) and neuroinflammation (TNF-α, IL-1ß, IL-6, NO, COX-2, and iNOS protein), and decreasing the expression of endoplasmic reticulum (ER) stress markers GRP78 and IRE1α in brain tissues. In rat C6 glioma cells, treatment with luteolin (1, 10 µM) dose-dependently inhibited LPS-induced cell proliferation, excessive release of inflammatory cytokines, and increase of ER stress marker GRP78. In conclusion, luteolin is an effective agent in the treatment of learning and memory deficits in 3 × Tg-AD mice, which may be attributable to the inhibition of ER stress in astrocytes and subsequent neuroinflammation. These results provide the experimental basis for further research and development of luteolin as a therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Endorribonucleasas/farmacología , Endorribonucleasas/uso terapéutico , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Proteínas Serina-Treonina Quinasas , Ratas
5.
Pharm Biol ; 59(1): 1378-1387, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629029

RESUMEN

CONTEXT: Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Bianliang ziyu, a variety of Chrysanthemum morifolium Ramat. (Asteraceae), has potential hepatoprotective effect. However, the mechanism is not clear yet. OBJECTIVE: To investigate the hepatoprotective activity and mechanism of Bianliang ziyu flower ethanol extract (BZE) on APAP-induced rats based on network pharmacology. MATERIALS AND METHODS: Potential pathways of BZE were predicted by network pharmacology. Male Sprague-Dawley rats were pre-treated with BZE (110, 220 and 440 mg/kg, i.g.) for eight days, and then APAP (800 mg/kg, i.g.) was used to induce liver injury. After 24 h, serum and liver were collected for biochemical detection and western blot measurement. RESULTS: Network pharmacology indicated that liver-protective effect of BZE was associated with its antioxidant and anti-apoptotic efficacy. APAP-induced liver pathological change was alleviated, and elevated serum AST and ALT were reduced by BZE (440 mg/kg) (from 66.45 to 22.64 U/L and from 59.59 to 17.49 U/L, respectively). BZE (440 mg/kg) reduced the ROS to 65.50%, and upregulated SOD and GSH by 212.92% and 175.38%, respectively. In addition, BZE (440 mg/kg) increased levels of p-AMPK, p-GSK3ß, HO-1 and NQO1, ranging from 1.66- to 10.29-fold compared to APAP group, and promoted nuclear translocation of Nrf2. BZE also inhibited apoptosis induced by APAP through the PI3K-Akt pathway and restored the ability of mitochondrial biogenesis. DISCUSSION AND CONCLUSIONS: Our study demonstrated that BZE protected rats from APAP-induced liver injury through antioxidant and anti-apoptotic pathways, suggesting BZE could be further developed as a potential liver-protecting agent.


Asunto(s)
Acetaminofén/envenenamiento , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Chrysanthemum/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Relación Dosis-Respuesta a Droga , Sobredosis de Droga , Flores , Masculino , Farmacología en Red , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas , Ratas Sprague-Dawley
6.
Nanotechnology ; 31(16): 165102, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31899896

RESUMEN

The non-specific biodistribution of traditional chemotherapeutic drugs against tumors is the key factor that causes systemic toxicity and hinders their clinical application. In this study, a reduction-sensitive polymer conjugate micelle was manufactured to achieve tumor-specific targeting, reduce toxic side-effects and improve anti-tumor activity of a natural anti-cancer drug, hydroxycamptothecin (HCPT). Therefore, HCPT was conjugated with methoxy-poly(ethylene glycol)-poly(ß-benzyl-L-aspartate) (mPEG-PBLA) by a disulfide bond or succinate bond for the first time to obtain the mPEG-PBLA-SS-HCPT (PPSH) and mPEG-PBLA-CC-HCPT (PPCH) that would form micelles after high-speed agitation and dialysis. The PPSH micelles showed an average particle size of 126.3 nm, a low polydispersity index of 0.209, and a negative surface charge of -21.1 mV zeta potential. Transmission electron microscopy showed the PPSH micelles to have spherical morphology. PPSH had a low critical micelle concentration of 1.29 µg ml-1 with high dilution stability, storage stability and reproducibility. Moreover, the particle size of the PPSH micelles had no significant change after incubation with rat plasma for 72 h, probably resulting in high long circulation in the blood. The PPSH micelles showed significant reduction sensitivity to glutathione. Their sizes increased by 403.2 nm after 24 h post-incubation, and 87.6% drug release was achieved 48 h post-incubation with 40 mM glutathione solutions. The PPSH micelles showed stronger inhibition of HepG2 cells in vitro and growth of H-22 tumor in vivo than the PPCH and HCPT solutions after intravenous injection. The accumulation of PPSH micelles in the tumor tissue contributed to the high anti-tumor effect with little side-effect on the normal tissues. The reduction-sensitive PPSH micelles were a promising carrier of HCPT and other poorly soluble anti-cancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Camptotecina/análogos & derivados , Sistemas de Liberación de Medicamentos , Espacio Intracelular/química , Micelas , Péptidos/química , Polietilenglicoles/química , Animales , Camptotecina/sangre , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/farmacología , Muerte Celular/efectos de los fármacos , Disulfuros/química , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Ratones , Oxidación-Reducción , Tamaño de la Partícula , Péptidos/síntesis química , Polietilenglicoles/síntesis química , Ratas Sprague-Dawley , Succinatos/química , Distribución Tisular
7.
Clin Immunol ; 193: 12-23, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29803820

RESUMEN

Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder impairing memory and cognition. In this study, we describe the immunogenicity and protective efficacy of the novel recombinant 6Aß15-TF chimeric antigen as a subunit protein vaccine for AD. Recombinant 6Aß15-TF chimeric vaccine induced strong Aß-specific humoral immune responses without Aß-specific T cell immunity in C57/BL6 and 3 × Tg-AD mice at different ages. As an early immunotherapy model for AD, this vaccine induced high titers of long-lasting anti-Aß42 antibodies in aged 3 × Tg-AD mice, which led to improve behavioral performance and markedly reduced the levels of insoluble and soluble Aß and Aß oligomers. In agreement with these findings, immunotherapy with 6Aß15-TF prevented the Aß-induced decrease of presynaptic and postsynaptic proteins in aged 3 × Tg-AD mice. Our results suggest that this novel and highly immunogenic recombinant 6Aß15-TF chimeric vaccine provides neuroprotection in AD mice and can be considered an effective AD candidate vaccine.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Vacunas contra el Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Inmunoterapia/métodos , Fragmentos de Péptidos/inmunología , Proteínas Recombinantes de Fusión/inmunología , Envejecimiento , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Cognición , Modelos Animales de Enfermedad , Sinapsis Eléctricas , Femenino , Humanos , Inmunidad Humoral , Inmunización , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas
8.
Molecules ; 22(7)2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684704

RESUMEN

Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H2O2). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H2O2 were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H2O2 were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Feocromocitoma/patología , Quercetina/farmacología , Neoplasias de las Glándulas Suprarrenales/enzimología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Peróxido de Hidrógeno/toxicidad , Malondialdehído/metabolismo , Modelos Biológicos , Células PC12 , Feocromocitoma/enzimología , Ratas , Especies Reactivas de Oxígeno/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 41(24): 4605-4609, 2016 Dec.
Artículo en Zh | MEDLINE | ID: mdl-28936844

RESUMEN

To investigate the chemical compounds from the fruit of Cornus officinalis, six compounds were isolated and determined by extensive spectroscopic analysis as 6'-O-acetyl-7α-O-ethyl morroniside (1), (-)-isolariciresinol 3α-O-ß-D-glucopyranoside(2), apigenin (3), cirsiumaldehyde(4), p-coumaric acid (5), caffeic acid (6). Compound 1 was a new iridoid glucoside,and compounds 2-4 were obtained from the Cornus genus for the first time. Compounds 2-6 were evaluated for the viability of PC12 cells when exposed in conditions of oxygen and glucose deprivation. The MTT results showed that compound 4 increased cell viability moderately in OGD/R treated PC12 cells at the concentration of 1.0 µmol•L⁻¹.


Asunto(s)
Cornus/química , Frutas/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Animales , Glicósidos Iridoides/química , Glicósidos Iridoides/aislamiento & purificación , Células PC12 , Fitoquímicos/química , Ratas
10.
Invest New Drugs ; 33(4): 810-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25952465

RESUMEN

We evaluated the utility of chemokine MCP-3 and MDC/CCL22 as molecular adjuvants of DNA vaccines for botulinum neurotoxin serotype A (BoNT/A) in a Balb/c mouse model. Notably, the immunogenicity of the DNA vaccine against BoNT/A was not enhanced using a fusion of the AHc-C antigen with the MCP-3 or MDC/CCL22. Nevertheless, the potency of the DNA vaccine was significantly modulated and enhanced by co-administration of the AHc-C antigen with MCP-3 or MDC/CCL22. This strategy elicited high levels of humoral immune responses and protection against BoNT/A. The enhanced potency was further boosted by co-administration of the AHc-C antigen with both MCP-3 and MDC/CCL22 in Balb/c mice, but not by co-administration of AHc-C antigen with the MCP-3-MDC/CCL22 fusion. Co-immunization with both the MCP-3 and MDC/CCL22 constructs induced the highest levels of humoral immunity and protective potency against BoNT/A. Our results indicated that MCP-3 and MDC/CCL22 are effective molecular adjuvants of the immune responses induced by the AHc-C-expressing DNA vaccine when delivered by co-administration of the individual chemokines, but not when delivered in the form of a chemokine/antigen fusion. Thus, we describe an alternative strategy to the design and optimization of DNA vaccine constructs based on co-administration of the antigen with the chemokine rather than in the form of a chemokine/antigen fusion.


Asunto(s)
Antígenos/inmunología , Toxinas Botulínicas Tipo A/inmunología , Quimiocina CCL22/inmunología , Quimiocina CCL7/inmunología , Vacunas de ADN , Animales , Femenino , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Potencia de la Vacuna
11.
Yao Xue Xue Bao ; 50(10): 1240-5, 2015 Oct.
Artículo en Zh | MEDLINE | ID: mdl-26837168

RESUMEN

This study was conducted to investigate the paclitaxel loaded by hydrazone bonds in poly(ethylene glycol)-poly(caprolactone) micelles (mPEG-PCL-PTX) on proliferation and apoptosis of human lung cancer A549 cells and its possible mechanisms of anti-tumor activity. The cell proliferation was measured with MTT assay. Flow cytometry were used to analyze the cell cycle. The cell apoptosis was analyzed using Hoechst/P staining. The expression levels of apoptotic genes expression in the mitochondrial apoptosis pathway were detected by RT-PCR and Western blotting, respectively. The mPEG-PCL-PTX could inhibit the proliferation of A549 cells and promote the apoptosis. The Bax, caspase-3 protein expression were increased while Bcl-2 protein expression was decreased in A549 cells. Results showed that the polymer containing hydrazone bond is non-toxic in vitro, the mPEG-PCL-PTX micelles can inhibit the proliferation and induce the apoptosis of A549 cells. Key words: paclitaxel; micelle; A549 cell; proliferation; cell cycle; apoptosis


Asunto(s)
Apoptosis , Neoplasias Pulmonares/patología , Micelas , Paclitaxel/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular , Humanos , Neoplasias Pulmonares/metabolismo , Poliésteres , Polietilenglicoles , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Yao Xue Xue Bao ; 49(8): 1130-5, 2014 Aug.
Artículo en Zh | MEDLINE | ID: mdl-25322554

RESUMEN

This study is to investigate the effect of the effective components group of Xiaoshuantongluo (XECG) on neuronal injury induced by oxygen-glucose deprivation (OGD) in primary cortical cultures isolated from SD rat cortex at day 3 and the possible mechanism. Cells were divided into control group, OGD model group and XECG group (1, 3 and 10 mg x L(-1)). The cell viability was assessed with MTT assay and the LDH release rate was measured by enzyme label kit. The cell apoptosis was analyzed using Hoechst staining. RT-PCR was applied to detect the mRNA levels of JAK2 and STAT3. Western blotting was used to detect the expressions of Bcl-2, Bax, p-JAK2 and p-STAT3 proteins. Results showed that XECG resulted in an obvious resistance to oxygen-glucose deprivation-induced cell apoptosis and decrement of cell viability, decrease the cell LDH release rate. XECG could adjust the expression of Bcl-2 and Bax proteins and increase Bcl-2/Bax ratio, up-regulate the expression of p-JAK2 and p-STAT3. In conclusion, XECG could protect against the neuronal injury cells exposed to OGD, which may be relevant to the promotion of JAK2/STAT3 signaling pathway, and impact the expression of Bax and Bcl-2.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Glucosa , Janus Quinasa 2/metabolismo , Neuronas/metabolismo , Oxígeno , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 39(4): 721-5, 2014 Feb.
Artículo en Zh | MEDLINE | ID: mdl-25204154

RESUMEN

OBJECTIVE: To discuss the protective effect of Mailuoning injection on ischemia/reperfusion (I/R) injury in rats and its mechanism. METHOD: Healthy male adult Sprague-Dawley (SD) rats were randomly divided into the sham operation group, the model group, the edaravone (3 mg x kg(-1)) control group, and Mailuoning high, middle and low-dose groups (4, 2, 1 mL x kg(-1)), with 10 rats in each group, and administered with drugs through tail intravenous injection. The middle cerebral artery occlusion (MCAO) was adopted to establish the rat ischemia/reperfusion model. After the ischemia for 2 h and reperfusion for 24 h, the pathological changes in neurovascular units (NVU) of brain tissues at the ischemia side was observed by HE staining. The expressions of glialfibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Ibal) were detected by the immunohistochemical method. The expressions of tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by the western blotting technique. RESULT: Mailuoning injection could significantly improve the pathological changes in cortical penumbra brain tissue UVN of (I/R) rats, reduce the number of GFAP and Ibal positive cells, and significantly decrease the expressions of TNF-alpha, IL-1beta, VCAM-1 and ICAM-1 of brain tissues of I/R rats. CONCLUSION: Mailuoning injection shows an obvious protective effect on UVN of I/R rats. Its mechanism may involve the inhibition of the activation of astrocyte and microglia and the secretion and expression of various inflammatory factors.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Sustancias Protectoras/administración & dosificación , Daño por Reperfusión/prevención & control , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/cirugía , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
14.
Hypertens Res ; 47(5): 1273-1287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438725

RESUMEN

m6A (N6­methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Hipertensión Arterial Pulmonar , Humanos , Metilación , Adenosina/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Animales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metilación de ARN
15.
Phytomedicine ; 124: 155298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185066

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and mitophagy deficit was identified as the typical abnormality in early stage of AD. The neuroprotective effect of andrographolide (AGA) has been confirmed, anda acetylated derivative of AGA (3,14,19-triacetylandrographolide, ADA) was considered to have stronger efficacy. PURPOSE: The current study aims to investigate the impact of ADA on cognitive ability in a sporadic AD model and explore its potential mechanism. STUDY DESIGN/ METHODS: Apoe4 mouse was adopted for evaluating the impact of AGA on cognitive impairment through a serious of behavioral tests. The molecular mechanism of ADA involved in mitophagy and neuroinflammation was investigated in detailby Western blot, ELISA, immunofluorescence and transmission electron microscopy in Apoe4 mice, as well as Apoe4-transfected BV2 cells and HT22 cells. RESULTS: ADA application significantly improved cognitive impairment of Apoe4 mice, and lessened Aß load and neuronal damage, which has stronger activity than its prototype AGA. Accumulated mitophagy markers LC3II, P62, TOM20, PINK1 and Parkin, and decreased mitophagy receptor BNIP3 in hippocampus of Apoe4 mice were greatly reversed after ADA treatment. Meanwhile, ADA promoted the recruitment of BNIP3 to mitochondria, and the transport of damaged mitochondria to lysosome, indicating that disturbed mitophagy in AD mice was restored by ADA. Inhibited SIRT3 and FOXO3a in Apoe4 mice brains were elevated after ADA treatment. ADA also lightened the neuroinflammation caused by NLRP3 inflammasome activation. Additionally, damaged mitophagy and/or activated NLRP3 inflammasome were also observed in BV2 cells and HT22 cells transfected with Apoe4, all of which were rescued by ADA incubation. Noteworthily, SIRT3 inhibitor 3-TYP could abolish the impact of ADA on mitophagy and NLRP3 inflammasome in vitro. CONCLUSION: ADA exerted stronger cognition-enhancing ability in relative to AGA, and ADA could repaire mitophagy deficiency via SIRT3-FOXO3a pathway, and subsequently inhibite NLRP3 inflammasome to mitigate AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diterpenos , Sirtuina 3 , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitofagia , Inflamasomas/metabolismo , Apolipoproteína E4/farmacología , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
16.
Nat Commun ; 15(1): 705, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267418

RESUMEN

Toxic amyloid-beta (Aß) plaque and harmful inflammation are two leading symptoms of Alzheimer's disease (AD). However, precise AD therapy is unrealizable due to the lack of dual-targeting therapy function, poor BBB penetration, and low imaging sensitivity. Here, we design a near-infrared-II aggregation-induced emission (AIE) nanotheranostic for precise AD therapy. The anti-quenching emission at 1350 nm accurately monitors the in vivo BBB penetration and specifically binding of nanotheranostic with plaques. Triggered by reactive oxygen species (ROS), two encapsulated therapeutic-type AIE molecules are controllably released to activate a self-enhanced therapy program. One specifically inhibits the Aß fibrils formation, degrades Aß fibrils, and prevents the reaggregation via multi-competitive interactions that are verified by computational analysis, which further alleviates the inflammation. Another effectively scavenges ROS and inflammation to remodel the cerebral redox balance and enhances the therapy effect, together reversing the neurotoxicity and achieving effective behavioral and cognitive improvements in the female AD mice model.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Animales , Ratones , Enfermedad de Alzheimer/terapia , Especies Reactivas de Oxígeno , Péptidos beta-Amiloides , Citoesqueleto , Inflamación , Placa Amiloide
17.
Clin Immunol ; 149(1): 11-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23886550

RESUMEN

Active amyloid-beta (Aß) immunotherapy is under investigation to prevent or treat Alzheimer disease (AD). We describe here the immunological characterization and protective effect of DNA epitope chimeric vaccines using 6 copies of Aß1-15 fused with PADRE or toxin-derived carriers. These naked 6Aß15-T-Hc chimeric DNA vaccines were demonstrated to induce robust anti-Aß antibodies that could recognize Aß oligomers and inhibit Aß oligomer-mediated neurotoxicity, result in the reduction of cerebral Aß load and Aß oligomers, and improve cognitive function in AD mice, but did not stimulate Aß-specific T cell responses. Notably, toxin-derived carriers as molecular adjuvants were able to substantially promote immune responses, overcome Aß-associated hypo-responsiveness, and elicit long-term Aß-specific antibody response in 6Aß15-T-Hc-immunized AD mice. These findings suggest that our 6Aß15-T-Hc DNA chimeric vaccines can be used as a safe and effective strategy for AD immunotherapy, and toxin-derived carrier proteins are effective molecular adjuvants of DNA epitope vaccines for Alzheimer's disease.


Asunto(s)
Vacunas contra el Alzheimer/administración & dosificación , Péptidos beta-Amiloides/inmunología , Epítopos/inmunología , Inmunoterapia , Fragmentos de Péptidos/inmunología , Vacunas de ADN/administración & dosificación , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/genética , Animales , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón gamma/inmunología , Interleucina-4/inmunología , Vacunas contra la Malaria/inmunología , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/genética , Linfocitos T/inmunología
18.
Biochem Biophys Res Commun ; 435(1): 69-75, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23611777

RESUMEN

Pinocembrin (5,7-dihydroxyflavanone) is one of the primary flavonoids in propolis. Angiotensin II (AngII) is a biologically active peptide that induces vasoconstriction via the activation of the angiotensin type 1 receptor (AT1R). In the present study, we investigated the vasorelaxant effect of pinocembrin on AngII-induced vasoconstriction and the molecular mechanism of action. Pinocembrin was observed to inhibit AngII-induced vasoconstriction in rat aortic rings with either intact or denuded endothelium. In endothelium-denuded tissues, pinocembrin (pD́'2pD2(') 4.28±0.15) counteracted the contractions evoked by cumulative concentrations of AngII. In a docking model, pinocembrin showed effective binding at the active site of AT1R. Pinocembrin was shown to inhibit both AngII-induced Ca(2+) release from internal stores and Ca(2+) influx. Moreover, the increase in the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and myosin light chain 2 (MLC2) induced by AngII was blocked by pinocembrin. These results demonstrate that pinocembrin inhibits AngII-induced rat aortic ring contraction, and these inhibitory effects may be related to the reduction of the AngII-induced increase in [Ca(2+)]i and ERK1/2 activation via blocking AT1R.


Asunto(s)
Aorta Torácica/fisiología , Calcio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavanonas/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Vasoconstricción/efectos de los fármacos , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Aorta Torácica/citología , Aorta Torácica/metabolismo , Western Blotting , Miosinas Cardíacas/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endotelio Vascular/fisiología , Activación Enzimática/efectos de los fármacos , Flavanonas/metabolismo , Técnicas In Vitro , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
Toxins (Basel) ; 15(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977091

RESUMEN

Botulinum neurotoxins (BoNTs) can cause nerve paralysis syndrome in mammals and other vertebrates. BoNTs are the most toxic biotoxins known and are classified as Class A biological warfare agents. BoNTs are mainly divided into seven serotypes A-G and new neurotoxins BoNT/H and BoNT/X, which have similar functions. BoNT proteins are 150 kDa polypeptide consisting of two chains and three domains: the light chain (L, catalytic domain, 50 kDa) and the heavy chain (H, 100 kDa), which can be divided into an N-terminal membrane translocation domain (HN, 50 kDa) and a C-terminal receptor binding domain (Hc, 50 kDa). In current study, we explored the immunoprotective efficacy of each functional molecule of BoNT/F and the biological characteristics of the light chain-heavy N-terminal domain (FL-HN). The two structure forms of FL-HN (i.e., FL-HN-SC: single chain FL-HN and FL-HN-DC: di-chain FL-HN) were developed and identified. FL-HN-SC could cleave the vesicle associated membrane protein 2 (VAMP2) substrate protein in vitro as FL-HN-DC or FL. While only FL-HN-DC had neurotoxicity and could enter neuro-2a cells to cleave VAMP2. Our results showed that the FL-HN-SC had a better immune protection effect than the Hc of BoNT/F (FHc), which indicated that L-HN-SC, as an antigen, provided the strongest protective effects against BoNT/F among all the tested functional molecules. Further in-depth research on the different molecular forms of FL-HN suggested that there were some important antibody epitopes at the L-HN junction of BoNT/F. Thus, FL-HN-SC could be used as a subunit vaccine to replace the FHc subunit vaccine and/or toxoid vaccine, and to develop antibody immune molecules targeting L and HN domains rather than the FHc domain. FL-HN-DC could be used as a new functional molecule to evaluate and explore the structure and activity of toxin molecules. Further exploration of the biological activity and molecular mechanism of the functional FL-HN or BoNT/F is warranted.


Asunto(s)
Toxinas Botulínicas Tipo A , Animales , Toxinas Botulínicas Tipo A/metabolismo , Serogrupo , Proteína 2 de Membrana Asociada a Vesículas , Neurotoxinas/metabolismo , Mamíferos/metabolismo
20.
J Ethnopharmacol ; 312: 116455, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37019163

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Corni Fructus is a traditional Chinese herb and widely applied for treatment of age-related disorders in China. Iridoid glycoside was considered as the active ingredient of Corni Fructus. Loganin is one of the major iridoid glycosides and quality control components of Corni Fructus. Emerging evidence emphasized the beneficial effect of loganin on neurodegenerative disorders, such as Alzheimer's disease (AD). However, the detailed mechanism underlying the neuroprotective action of loganin remains to be unraveled. AIM OF THE STUDY: To explore the improvement of loganin on cognitive impairment in 3 × Tg-AD mice and reveal the potential mechanism. MATERIALS AND METHODS: Eight-month 3 × Tg-AD male mice were intraperitoneally injected with loganin (20 and 40 mg/kg) for consecutive 21 days. Behavioral tests were used to evaluated the cognition-enhancing effects of loganin, and Nissl staining and thioflavine S staining were performed to analyze neuronal survival and Aß pathology. Western blot analysis, transmission electron microscopy and immunofluorescence were utilized to explore the molecular mechanism of loganin in AD mice involved mitochondrial dynamics and mitophagy. Aß25-35-induced SH-SY5Y cells were applied to verify the potential mechanism in vitro. RESULTS: Loganin significantly mitigated the learning and memory deficit and amyloid ß-protein (Aß) deposition, and recovered synaptic ultrastructure in 3 × Tg-AD mice. Perturbed mitochondrial dynamics characterized by excessive fission and insufficient fusion were restored after loganin treatment. Meanwhile, loganin reversed the increase of mitophagy markers (LC3II, p62, PINK1 and Parkin) and mitochondrial markers (TOM20 and COXIV) in hippocampus of AD mice, and enhanced the location of optineurin (OPTN, a well-known mitophagy receptor) to mitochondria. Accumulated PINK1, Parkin, p62 and LC3II were also revealed in Aß25-35-induced SH-SY5Y cells, which were ameliorated by loganin. Increased OPTN in Aß25-35-treated SH-SY5Y cells was further upregulated by loganin incubation, along with the reduction of mitochondrial ROSand elevation ofmitochondrial membrane potential (MMP). Conversely, OPTN silence neutralized the effect of loganin on mitophagy and mitochondrial function, which is consistent with the finding that loganin presented strong affinity with OPTN measured by molecular docking in silico. CONCLUSIONS: Our observations confirmed that loganin enhanced cognitive function and alleviated AD pathology probably by promoting OPTN-mediated mitophagy,. Loganin might be a potential drug candidate for AD therapy via targeting mitophagy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Neuroblastoma , Ratones , Humanos , Masculino , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Mitofagia , Péptidos beta-Amiloides , Simulación del Acoplamiento Molecular , Iridoides/farmacología , Iridoides/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/patología , Proteínas Quinasas , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA