Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Pathog ; 16(7): e1008680, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32673374

RESUMEN

Pathogenic bacteria frequently acquire virulence traits via horizontal gene transfer, yet additional evolutionary innovations may be necessary to integrate newly acquired genes into existing regulatory pathways. The plant bacterial pathogen Pseudomonas syringae relies on a horizontally acquired type III secretion system (T3SS) to cause disease. T3SS-encoding genes are induced by plant-derived metabolites, yet how this regulation occurs, and how it evolved, is poorly understood. Here we report that the two-component system AauS-AauR and substrate-binding protein AatJ, proteins encoded by an acidic amino acid-transport (aat) and -utilization (aau) locus in P. syringae, directly regulate T3SS-encoding genes in response to host aspartate and glutamate signals. Mutants of P. syringae strain DC3000 lacking aauS, aauR or aatJ expressed lower levels of T3SS genes in response to aspartate and glutamate, and had decreased T3SS deployment and virulence during infection of Arabidopsis. We identified an AauR-binding motif (Rbm) upstream of genes encoding T3SS regulators HrpR and HrpS, and demonstrated that this Rbm is required for maximal T3SS deployment and virulence of DC3000. The Rbm upstream of hrpRS is conserved in all P. syringae strains with a canonical T3SS, suggesting AauR regulation of hrpRS is ancient. Consistent with a model of conserved function, an aauR deletion mutant of P. syringae strain B728a, a bean pathogen, had decreased T3SS expression and growth in host plants. Together, our data suggest that, upon acquisition of T3SS-encoding genes, a strain ancestral to P. syringae co-opted an existing AatJ-AauS-AauR pathway to regulate T3SS deployment in response to specific host metabolite signals.


Asunto(s)
Arabidopsis/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas syringae/patogenicidad , Sistemas de Secreción Tipo III/fisiología , Virulencia/fisiología , Enfermedades de las Plantas/microbiología
2.
Mol Plant Microbe Interact ; 33(3): 509-518, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31829102

RESUMEN

The type III secretion system (T3SS) of plant-pathogenic Pseudomonas syringae is essential for virulence. Genes encoding the T3SS are not constitutively expressed and must be induced upon infection. Plant-derived metabolites, including sugars such as fructose and sucrose, are inducers of T3SS-encoding genes, yet the molecular mechanisms underlying perception of these host signals by P. syringae are unknown. Here, we report that sugar-induced expression of type III secretion A (setA), predicted to encode a DeoR-type transcription factor, is required for maximal sugar-induced expression of T3SS-associated genes in P. syringae DC3000. From a Tn5 transposon mutagenesis screen, we identified two independent mutants with insertions in setA. When both setA::Tn5 mutants were cultured in minimal medium containing fructose, genes encoding the T3SS master regulator HrpL and effector AvrRpm1 were expressed at lower levels relative to that of a wild-type strain. Decreased hrpL and avrRpm1 expression also occurred in a setA::Tn5 mutant in response to glucose, sucrose, galactose, and mannitol, demonstrating that setA is genetically required for T3SS induction by many different sugars. Expression of upstream regulators hrpR/S and rpoN was not altered in setA::Tn5, indicating that SetA positively regulates hrpL expression independently of increased transcription of these genes. In addition to decreased response to defined sugar signals, a setA::Tn5 mutant had decreased T3SS deployment during infection and was compromised in its ability to grow in planta and cause disease. These data suggest that SetA is necessary for P. syringae to effectively respond to T3SS-inducing sugar signals encountered during infection.


Asunto(s)
Proteínas Bacterianas/fisiología , Pseudomonas syringae/genética , Azúcares/química , Factores de Transcripción/fisiología , Sistemas de Secreción Tipo III/genética , Arabidopsis/microbiología , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Enfermedades de las Plantas/microbiología
3.
PLoS Pathog ; 10(3): e1003991, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24626341

RESUMEN

The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Fosfotreonina/metabolismo , Secuencia de Aminoácidos , Western Blotting , Calorimetría , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Datos de Secuencia Molecular , Fosforilación
4.
Nat Commun ; 15(1): 7048, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147739

RESUMEN

Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Reconocimiento de Inmunidad Innata , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas/inmunología , Reconocimiento de Inmunidad Innata/genética , Metabolómica , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/inmunología , Prolina/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Transducción de Señal , Virulencia
5.
Science ; 333(6043): 758-62, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21719644

RESUMEN

Tail-anchored (TA) proteins are involved in cellular processes including trafficking, degradation, and apoptosis. They contain a C-terminal membrane anchor and are posttranslationally delivered to the endoplasmic reticulum (ER) membrane by the Get3 adenosine triphosphatase interacting with the hetero-oligomeric Get1/2 receptor. We have determined crystal structures of Get3 in complex with the cytosolic domains of Get1 and Get2 in different functional states at 3.0, 3.2, and 4.6 angstrom resolution. The structural data, together with biochemical experiments, show that Get1 and Get2 use adjacent, partially overlapping binding sites and that both can bind simultaneously to Get3. Docking to the Get1/2 complex allows for conformational changes in Get3 that are required for TA protein insertion. These data suggest a molecular mechanism for nucleotide-regulated delivery of TA proteins.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Citosol/química , Retículo Endoplásmico/metabolismo , Microsomas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA