Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099014

RESUMEN

Cell migration is a complex process underlying physiological and pathological processes such as brain development and cancer metastasis. The autophagy-linked FYVE protein (ALFY; also known as WDFY3), an autophagy adaptor protein known to promote clearance of protein aggregates, has been implicated in brain development and neural migration during cerebral cortical neurogenesis in mice. However, a specific role of ALFY in cell motility and extracellular matrix adhesion during migration has not been investigated. Here, we reveal a novel role for ALFY in the endocytic pathway and in cell migration. We show that ALFY localizes to RAB5- and EEA1-positive early endosomes in a PtdIns(3)P-dependent manner and is highly enriched in cellular protrusions at the leading and lagging edge of migrating cells. We find that cells lacking ALFY have reduced attachment and altered protein levels and glycosylation of integrins, resulting in the inability to form a proper leading edge and loss of directional cell motility.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Extensiones de la Superficie Celular , Animales , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Ratones
2.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29437695

RESUMEN

Trafficking of mammalian ATG9A between the Golgi apparatus, endosomes and peripheral ATG9A compartments is important for autophagosome biogenesis. Here, we show that the membrane remodelling protein SNX18, previously identified as a positive regulator of autophagy, regulates ATG9A trafficking from recycling endosomes. ATG9A is recruited to SNX18-induced tubules generated from recycling endosomes and accumulates in juxtanuclear recycling endosomes in cells lacking SNX18. Binding of SNX18 to Dynamin-2 is important for ATG9A trafficking from recycling endosomes and for formation of ATG16L1- and WIPI2-positive autophagosome precursor membranes. We propose a model where upon autophagy induction, SNX18 recruits Dynamin-2 to induce budding of ATG9A and ATG16L1 containing membranes from recycling endosomes that traffic to sites of autophagosome formation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Dinamina II/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Nexinas de Clasificación/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Proteínas de Unión a Fosfato , Unión Proteica , Transporte de Proteínas
3.
EMBO Rep ; 15(5): 557-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24668264

RESUMEN

Several autophagy proteins contain an LC3-interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B-positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP-ALFY-LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR-binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/ultraestructura , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Factores de Transcripción/ultraestructura
4.
Blood ; 120(4): 847-57, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22692509

RESUMEN

Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5µM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Citoplasma/metabolismo , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Óxidos/farmacología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Trióxido de Arsénico , Ciclo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Leucemia Promielocítica Aguda/genética , Mutación/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína de la Leucemia Promielocítica , Reciclaje , Sumoilación/efectos de los fármacos , Células Tumorales Cultivadas
5.
J Biol Chem ; 285(8): 5941-53, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20018885

RESUMEN

p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Espacio Intranuclear/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinación , Transporte Activo de Núcleo Celular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Ataxina-1 , Ataxinas , Células HeLa , Humanos , Cuerpos de Inclusión Intranucleares/genética , Proteínas del Tejido Nervioso/genética , Señales de Localización Nuclear/genética , Proteínas Nucleares/genética , Péptidos/genética , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Sequestosoma-1
6.
Sci Rep ; 10(1): 4528, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161285

RESUMEN

Dysregulated cholesterol homeostasis promotes the pathology of atherosclerosis, myocardial infarction and strokes. Cellular cholesterol is mainly regulated at the transcriptional level by SREBP2, but also through uptake of extracellular cholesterol from low density lipoproteins (LDL) via expression of LDL receptors (LDLR) at the cell surface. Identification of the mechanisms involved in regulation of these processes are thus key to understand the pathology of coronary artery disease. Here, we identify the large and poorly characterized BEACH domain protein Neurobeachin-like (NBEAL) 1 as a Golgi- associated protein required for regulation of cholesterol metabolism. NBEAL1 is most abundantly expressed in arteries. Genetic variants in NBEAL1 are associated with decreased expression of NBEAL1 in arteries and increased risk of coronary artery disease in humans. We show that NBEAL1 regulates cholesterol metabolism by modulating LDLR expression in a mechanism involving interaction with SCAP and PAQR3 and subsequent SREBP2-processing. Thus, low expression of NBEAL1 may lead to increased risk of coronary artery disease by downregulation of LDLR levels.


Asunto(s)
Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Susceptibilidad a Enfermedades , Sitios de Carácter Cuantitativo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Biomarcadores , Línea Celular , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos
7.
Autophagy ; 15(10): 1845-1847, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251109

RESUMEN

Removal of damaged mitochondria is vital for cellular homeostasis especially in non-dividing cells, like neurons. Damaged mitochondria that cannot be repaired by the ubiquitin-proteasomal system are cleared by a form of selective autophagy known as mitophagy. Following damage, mitochondria become labelled with 'eat-me' signals that selectively determine their degradation. Recently, we identified the mitochondrial matrix proteins, NIPSNAP1 (nipsnap homolog 1) and NIPSNAP2 as 'eat-me' signals for damaged mitochondria. NIPSNAP1 and NIPSNAP2 accumulate on the mitochondrial outer membrane following mitochondrial depolarization, recruiting autophagy receptors and adaptors, as well as human Atg8 (autophagy-related 8)-family proteins to facilitate mitophagy. The NIPSNAPs allow a sustained recruitment of SQSTM1-like receptors (SLRs) to ensure efficient mitophagy. Zebrafish lacking Nipsnap1 show decreased mitophagy in the brain coupled with increased ROS production, loss of dopaminergic neurons and strongly reduced locomotion.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Mitofagia/genética , Animales , Animales Modificados Genéticamente , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Unión Proteica , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/genética , Pez Cebra
8.
Dev Cell ; 49(4): 509-525.e12, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30982665

RESUMEN

The clearance of damaged or dysfunctional mitochondria by selective autophagy (mitophagy) is important for cellular homeostasis and prevention of disease. Our understanding of the mitochondrial signals that trigger their recognition and targeting by mitophagy is limited. Here, we show that the mitochondrial matrix proteins 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and NIPSNAP2 accumulate on the mitochondria surface upon mitochondrial depolarization. There, they recruit proteins involved in selective autophagy, including autophagy receptors and ATG8 proteins, thereby functioning as an "eat me" signal for mitophagy. NIPSNAP1 and NIPSNAP2 have a redundant function in mitophagy and are predominantly expressed in different tissues. Zebrafish lacking a functional Nipsnap1 display reduced mitophagy in the brain and parkinsonian phenotypes, including loss of tyrosine hydroxylase (Th1)-positive dopaminergic (DA) neurons, reduced motor activity, and increased oxidative stress.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mitofagia/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
9.
Biochim Biophys Acta ; 1760(2): 151-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16386375

RESUMEN

The activity of gamma-glutamyltransferase (GGT) is frequently upregulated in tumor cells after oxidative stress and may thus increase the availability of amino acids needed for biosynthesis of the antioxidant glutathione. As gamma-radiation of tumor cells can result in oxidative stress, we investigated whether such treatments modulate the enzyme level in colon carcinoma CC531 cells. Radiation of these cells blocked cell proliferation, increased cellular size, initiated apoptosis and upregulated GGT activity and protein levels in a dose- and time-related manner. A slight but significant increase in the cellular level of reactive oxygen species (ROS) was found directly after radiation but appeared not to cause the GGT elevation. Thus, other mechanisms than cellular oxidative stress appear to be responsible for the radiation-induced upregulation of GGT. Stable transfection of activated Ras in a human colon carcinoma cell line expressing wild-type Ras resulted in an increased GGT level, while a reduced enzyme level was demonstrated in another cell line with constitutively activated Ras after stably transfection with a dominant-negative Ras mutant. Moreover, addition of specific protein kinase inhibitors that blocked downstream targets PI-3K and MEK1/2 of Ras, prior to and after radiation, attenuated the radiation-induced activation of GGT. These results support a role for Ras, being frequently activated after radiation, in regulating the level of GGT and also indicate that GGT participates in radioresistance.


Asunto(s)
Neoplasias del Colon/enzimología , Rayos gamma , Transducción de Señal/fisiología , gamma-Glutamiltransferasa/biosíntesis , Proteínas ras/fisiología , Animales , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Quinasas Quinasa Quinasa PAM/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Ratas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Regulación hacia Arriba/efectos de la radiación , gamma-Glutamiltransferasa/efectos de la radiación
10.
Free Radic Res ; 41(12): 1376-84, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18075840

RESUMEN

Gamma-glutamyltransferase (GGT) plays a central role in the homeostasis of the antioxidant glutathione (GSH). The expression of GGT has been shown to be upregulated after oxidative stress, but the signalling pathways implicated remain poorly characterized. The results here show that acute exposure of CC531 cells to oxidative stress resulted in activation of Ras and augmented GGT enzyme activity, both at the transcriptional and at the translation level. Moreover, an involvement of the GGT promoter II was detected after RT-PCR and transient transfection studies. Ectopic expression of activated Ras, but not dominant negative Ras, also resulted in increased GGT promoter II transcriptional activity, an effect that was attenuated by over-expression of dominant negative mutants of Akt, p38 MAPK and MEK1. Addition of specific inhibitors of these kinases during oxidative stress diminished the activation of GGT. In conclusion, oxidative stress-induced activation of GGT involves Ras and several downstream signalling pathways.


Asunto(s)
Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , gamma-Glutamilciclotransferasa/genética , Proteínas ras/fisiología , Animales , Cafeína/farmacología , Carcinoma , Línea Celular Tumoral , Neoplasias del Colon , Cicloheximida/farmacología , Dactinomicina/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , Ratas , Vitamina K 3/farmacología
11.
Nat Commun ; 7: 13889, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004827

RESUMEN

A fundamental question is how autophagosome formation is regulated. Here we show that the PX domain protein HS1BP3 is a negative regulator of autophagosome formation. HS1BP3 depletion increased the formation of LC3-positive autophagosomes and degradation of cargo both in human cell culture and in zebrafish. HS1BP3 is localized to ATG16L1- and ATG9-positive autophagosome precursors and we show that HS1BP3 binds phosphatidic acid (PA) through its PX domain. Furthermore, we find the total PA content of cells to be significantly upregulated in the absence of HS1BP3, as a result of increased activity of the PA-producing enzyme phospholipase D (PLD) and increased localization of PLD1 to ATG16L1-positive membranes. We propose that HS1BP3 regulates autophagy by modulating the PA content of the ATG16L1-positive autophagosome precursor membranes through PLD1 activity and localization. Our findings provide key insights into how autophagosome formation is regulated by a novel negative-feedback mechanism on membrane lipids.


Asunto(s)
Autofagia/fisiología , Proteínas del Tejido Nervioso/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Cortactina/metabolismo , Células HEK293 , Células HeLa , Humanos , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/química , Fosfolipasa D/metabolismo , Dominios Proteicos , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Free Radic Res ; 45(5): 600-10, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21381898

RESUMEN

γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.


Asunto(s)
NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , gamma-Glutamiltransferasa/metabolismo , Acetofenonas/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Humanos , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Estrés Oxidativo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Regulación hacia Arriba/efectos de los fármacos
13.
Autophagy ; 6(4): 550-2, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20364109

RESUMEN

In mammalian cells, autophagosomes are transported along microtubule tracks to fuse with late endosomes or lysosomes. Autophagosomal membranes harbor the lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) and phosphatidylethanolamine-conjugated ATG8/LC3/GABARAP family proteins. The small GTPase Rab7 is implicated in autophagosomal transport and fusion. We have recently reported that a previously uncharacterized protein FYVE and coiled-coil domain-containing 1 (FYCO1) functions as an adapter linking autophagosomes to microtubule plus end-directed molecular motors. FYCO1 binds to both LC3, PtdIns(3)P and Rab7, and contains a domain responsible for microtubule plus end-dependent transport. When cells are depleted for FYCO1, autophagosomes accumulate in perinuclear clusters, whereas overexpression of FYCO1 redistributes Rab7-positive vesicles to microtubule plus ends at the cell periphery. FYCO1 is likely selectively recruited to autophagosomal membranes via a mechanism involving a conformational change upon LC3-LIR interaction to expose the FYVE domain for PtdIns(3)P binding.


Asunto(s)
Autofagia , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Fagosomas/metabolismo , Factores de Transcripción/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/química
14.
J Cell Biol ; 188(2): 253-69, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-20100911

RESUMEN

Autophagy is the main eukaryotic degradation pathway for long-lived proteins, protein aggregates, and cytosolic organelles. Although the protein machinery involved in the biogenesis of autophagic vesicles is well described, very little is known about the mechanism of cytosolic transport of autophagosomes. In this study, we have identified an adaptor protein complex, formed by the two autophagic membrane-associated proteins LC3 and Rab7 and the novel FYVE and coiled-coil (CC) domain-containing protein FYCO1, that promotes microtubule (MT) plus end-directed transport of autophagic vesicles. We have characterized the LC3-, Rab7-, and phosphatidylinositol-3-phosphate-binding domains in FYCO1 and mapped part of the CC region essential for MT plus end-directed transport. We also propose a mechanism for selective autophagosomal membrane recruitment of FYCO1.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Factores de Transcripción/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Autofagia/fisiología , Sitios de Unión/fisiología , Transporte Biológico Activo/fisiología , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Factores de Transcripción/genética , Vesículas Transportadoras/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
15.
Methods Enzymol ; 452: 181-97, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19200883

RESUMEN

The p62 protein, also called sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold protein that colocalizes with ubiquitinated protein aggregates in many neurodegenerative diseases and proteinopathies of the liver. The protein is able to polymerize via an N-terminal PB1 domain and can interact with ubiquitinated proteins via the C-terminal UBA domain. Also, p62/SQSTM1 binds directly to LC3 and GABARAP family proteins via a specific sequence motif. The protein is itself degraded by autophagy and may serve to link ubiquitinated proteins to the autophagic machinery to enable their degradation in the lysosome. Since p62 accumulates when autophagy is inhibited, and decreased levels can be observed when autophagy is induced, p62 may be used as a marker to study autophagic flux. Here, we present several protocols for monitoring autophagy-mediated degradation of p62 using Western blots, pulse-chase measurement of p62 half-life, immunofluorescence and immuno-electron microscopy, as well as live cell imaging with a pH-sensitive mCherry-GFP double tag. We also present data on species-specificity and map the epitopes recognized by several commercially available anti-p62 antibodies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Inmunoelectrónica
16.
J Biol Chem ; 282(33): 24131-45, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17580304

RESUMEN

Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Citosol , Colorantes Fluorescentes , Células HeLa , Humanos , Complejos Multiproteicos , Unión Proteica , ARN Interferente Pequeño/farmacología , Proteína Sequestosoma-1 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA