Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 162(2): 351-362, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186189

RESUMEN

When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information.


Asunto(s)
Interneuronas/citología , Percepción de Movimiento , Vías Nerviosas , Lóbulo Óptico de Animales no Mamíferos/fisiología , Percepción Visual , Animales , Drosophila melanogaster , Interneuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/citología , Transmisión Sináptica
2.
J Exp Biol ; 220(Pt 8): 1405-1410, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167805

RESUMEN

The identification of neurotransmitter type used by a neuron is important for the functional dissection of neuronal circuits. In the model organism Drosophila melanogaster, several methods for discerning the neurotransmitter systems are available. Here, we expanded the toolbox for the identification of cholinergic neurons by generating a new line FRT-STOP-FRT-VAChT::HA that is a conditional tagged knock-in of the vesicular acetylcholine transporter (VAChT) gene in its endogenous locus. Importantly, in comparison to already available tools for the detection of cholinergic neurons, the FRT-STOP-FRT-VAChT::HA allele also allows for identification of the subcellular localization of the cholinergic presynaptic release sites in a cell-specific manner. We used the newly generated FRT-STOP-FRT-VAChT::HA line to characterize the Mi1 and Tm3 neurons in the fly visual system and found that VAChT is present in the axons of both cell types, suggesting that Mi1 and Tm3 neurons provide cholinergic input to the elementary motion detectors, the T4 neurons.


Asunto(s)
Neuronas Colinérgicas/citología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Animales , Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas , Neuronas Colinérgicas/metabolismo , Edición Génica , Técnicas de Sustitución del Gen , Genotipo , Proteínas de Transporte Vesicular de Acetilcolina/análisis
3.
PLoS One ; 11(9): e0163986, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27684367

RESUMEN

Neuronal computation underlying detection of visual motion has been studied for more than a half-century. In Drosophila, direction-selective T4/T5 neurons show supralinear signal amplification in response to stimuli moving in their preferred direction, in agreement with the prediction made by the Hassenstein-Reichardt detector. Nevertheless, the molecular mechanism explaining how the Hassenstein-Reichardt model is implemented in T4/T5 cells has not been identified yet. In the present study, we utilized cell type-specific transcriptome profiling with RNA-seq to obtain a complete gene expression profile of T4/T5 neurons. We analyzed the expression of genes that affect neuronal computational properties and can underlie the molecular implementation of the core features of the Hassenstein-Reichardt model to the dendrites of T4/T5 neurons. Furthermore, we used the acquired RNA-seq data to examine the neurotransmitter system used by T4/T5 neurons. Surprisingly, we observed co-expression of the cholinergic markers and the vesicular GABA transporter in T4/T5 neurons. We verified the previously undetected expression of vesicular GABA transporter in T4/T5 cells using VGAT-LexA knock-in line. The provided gene expression dataset can serve as a useful source for studying the properties of direction-selective T4/T5 neurons on the molecular level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA