Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Lipid Res ; 62: 100018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361282

RESUMEN

Deficiency of glucocerebrosidase (GBA), a lysosomal ß-glucosidase, causes Gaucher disease. The enzyme hydrolyzes ß-glucosidic substrates and transglucosylates cholesterol to cholesterol-ß-glucoside. Here we show that recombinant human GBA also cleaves ß-xylosides and transxylosylates cholesterol. The xylosyl-cholesterol formed acts as an acceptor for the subsequent formation of di-xylosyl-cholesterol. Common mutant forms of GBA from patients with Gaucher disease with reduced ß-glucosidase activity were similarly impaired in ß-xylosidase, transglucosidase, and transxylosidase activities, except for a slightly reduced xylosidase/glucosidase activity ratio of N370S GBA and a slightly reduced transglucosylation/glucosidase activity ratio of D409H GBA. XylChol was found to be reduced in spleen from patients with Gaucher disease. The origin of newly identified XylChol in mouse and human tissues was investigated. Cultured human cells exposed to exogenous ß-xylosides generated XylChol in a manner dependent on active lysosomal GBA but not the cytosol-facing ß-glucosidase GBA2. We later sought an endogenous ß-xyloside acting as donor in transxylosylation reactions, identifying xylosylated ceramide (XylCer) in cells and tissues that serve as donor in the formation of XylChol. UDP-glucosylceramide synthase (GCS) was unable to synthesize XylChol but could catalyze the formation of XylCer. Thus, food-derived ß-D-xyloside and XylCer are potential donors for the GBA-mediated formation of XylChol in cells. The enzyme GCS produces XylCer at a low rate. Our findings point to further catalytic versatility of GBA and prompt a systematic exploration of the distribution and role of xylosylated lipids.


Asunto(s)
Glucosilceramidasa
2.
Biochemistry ; 58(7): 997-1009, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30632739

RESUMEN

Mycobacterium tuberculosis (Mtb), the main causative agent of tuberculosis (TB), is naturally resistant to ß-lactam antibiotics due to the production of the extended spectrum ß-lactamase BlaC. ß-Lactam/ß-lactamase inhibitor combination therapies can circumvent the BlaC-mediated resistance of Mtb and are promising treatment options against TB. However, still little is known of the exact mechanism of BlaC inhibition by the ß-lactamase inhibitors currently approved for clinical use, clavulanic acid, sulbactam, tazobactam, and avibactam. Here, we present the X-ray diffraction crystal structures of the acyl-enzyme adducts of wild-type BlaC with the four inhibitors. The +70 Da adduct derived from clavulanate and the trans-enamine acylation adducts of sulbactam and tazobactam are reported. BlaC in complex with avibactam revealed two inhibitor conformations. Preacylation binding could not be observed because inhibitor binding was not detected in BlaC variants carrying a substitution of the active site serine 70 to either alanine or cysteine, by crystallography, ITC or NMR. These results suggest that the catalytic serine 70 is necessary not only for enzyme acylation but also for increasing BlaC affinity for inhibitors in the preacylation state. The structure of BlaC with the serine to cysteine mutation showed a covalent linkage of the cysteine 70 Sγ atom to the nearby amino group of lysine 73. The differences of adduct conformations between BlaC and other ß-lactamases are discussed.


Asunto(s)
Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Acilación , Aldehídos/química , Sustitución de Aminoácidos , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/metabolismo , Compuestos de Azabiciclo/farmacología , Dominio Catalítico , Ácido Clavulánico/química , Ácido Clavulánico/metabolismo , Cristalografía por Rayos X , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Conformación Proteica , Serina/genética , Serina/metabolismo , Sulbactam/química , Sulbactam/metabolismo , Tazobactam/química , Tazobactam/metabolismo , Tazobactam/farmacología , Inhibidores de beta-Lactamasas/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
3.
J Biol Chem ; 293(26): 10042-10058, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29674318

RESUMEN

α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.


Asunto(s)
Enfermedad de Fabry/enzimología , Nicotiana/enzimología , alfa-Galactosidasa/metabolismo , Biocatálisis , Membrana Celular/metabolismo , Enfermedad de Fabry/patología , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Nicotiana/citología , alfa-Galactosidasa/genética
4.
Biochem J ; 475(17): 2847-2860, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30049896

RESUMEN

Group A Streptococcus (GAS; Streptococcus pyogenes) causes a wide range of infections, including pharyngitis, impetigo, and necrotizing fasciitis, and results in over half a million deaths annually. GAS ScpC (SpyCEP), a 180-kDa surface-exposed, subtilisin-like serine protease, acts as an essential virulence factor that helps S. pyogenes evade the innate immune response by cleaving and inactivating C-X-C chemokines. ScpC is thus a key candidate for the development of a vaccine against GAS and other pathogenic streptococcal species. Here, we report the crystal structures of full-length ScpC wild-type, the inactive mutant, and the ScpC-AEBSF inhibitor complex. We show ScpC to be a multi-domain, modular protein consisting of nine structural domains, of which the first five constitute the PR + A region required for catalytic activity. The four unique C-terminal domains of this protein are similar to collagen-binding and pilin proteins, suggesting an additional role for ScpC as an adhesin that might mediate the attachment of S. pyogenes to various host tissues. The Cat domain of ScpC is similar to subtilisin-like proteases with significant difference to dictate its specificity toward C-X-C chemokines. We further show that ScpC does not undergo structural rearrangement upon maturation. In the ScpC-inhibitor complex, the bound inhibitor breaks the hydrogen bond between active-site residues, which is essential for catalysis. Guided by our structure, we designed various epitopes and raised antibodies capable of neutralizing ScpC activity. Collectively, our results demonstrate the structure, maturation process, inhibition, and substrate recognition of GAS ScpC, and reveal the presence of functional domains at the C-terminal region.


Asunto(s)
Proteínas Bacterianas/química , Serina Endopeptidasas/química , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Dominios Proteicos , Serina Endopeptidasas/genética , Streptococcus pyogenes/genética , Factores de Virulencia/genética
5.
Biochem Biophys Res Commun ; 495(1): 1002-1007, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29175332

RESUMEN

Legionella pneumophila is a pathogen, causing severe pneumonia in humans called Legionnaires' disease. AnkC (LegA12) is a poorly characterized 495-residue effector protein conserved in multiple Legionella species. Here, we report the crystal structure of a C-terminally truncated AnkC (2-384) at 3.2 Å resolution. The structure shows seven ankyrin repeats (ARs) with unique structural features. AnkC forms a dimer along the outer surface of loops between ARs. The dimer exists both in the crystal form and in solution, as shown by analytical ultracentrifugation. This is the first example of ARs as a dimerization module as opposed to solely a protein interaction domain. In addition, a novel α-helix insert between AR3-AR4 is positioned across the surface opposite the ankyrin groove. Sequence conservation suggests that the ankyrin groove of AnkC is a functional site that interacts with binding targets. This ankyrin domain structure is an important step towards a functional characterization of AnkC.


Asunto(s)
Repetición de Anquirina , Ancirinas/química , Ancirinas/ultraestructura , Modelos Químicos , Modelos Moleculares , Multimerización de Proteína , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Secuencia Conservada , Legionella pneumophila/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica
6.
Biochemistry ; 56(47): 6257-6267, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29087696

RESUMEN

The rise of multi- and even totally antibiotic resistant forms of Mycobacterium tuberculosis underlines the need for new antibiotics. The pathogen is resistant to ß-lactam compounds due to its native serine ß-lactamase, BlaC. This resistance can be circumvented by administration of a ß-lactamase inhibitor. We studied the interaction between BlaC and the inhibitor clavulanic acid. Our data show hydrolysis of clavulanic acid and recovery of BlaC activity upon prolonged incubation. The rate of clavulanic acid hydrolysis is much higher in the presence of phosphate ions. A specific binding site for phosphate is identified in the active site pocket, both in the crystalline state and in solution. NMR spectroscopy experiments show that phosphate binds to this site with a dissociation constant of 30 mM in the free enzyme. We conclude that inhibition of BlaC by clavulanic acid is reversible and that phosphate ions can promote the hydrolysis of the inhibitor.


Asunto(s)
Ácido Clavulánico/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Fosfatos/farmacología , Tuberculosis/tratamiento farmacológico , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , Sitios de Unión , Sinergismo Farmacológico , Humanos , Hidrólisis , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Tuberculosis/microbiología
7.
Biochem Biophys Res Commun ; 483(1): 122-128, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28042035

RESUMEN

The conversion of l-alanine (L-Ala) into d-alanine (D-Ala) in bacteria is performed by pyridoxal phosphate-dependent enzymes called alanine racemases. D-Ala is an essential component of the bacterial peptidoglycan and hence required for survival. The Gram-positive bacterium Streptomyces coelicolor has at least one alanine racemase encoded by alr. Here, we describe an alr deletion mutant of S. coelicolor which depends on D-Ala for growth and shows increased sensitivity to the antibiotic d-cycloserine (DCS). The crystal structure of the alanine racemase (Alr) was solved with and without the inhibitors DCS or propionate, at 1.64 Å and 1.51 Å resolution, respectively. The crystal structures revealed that Alr is a homodimer with residues from both monomers contributing to the active site. The dimeric state of the enzyme in solution was confirmed by gel filtration chromatography, with and without L-Ala or d-cycloserine. The activity of the enzyme was 66 ± 3 U mg-1 for the racemization of L- to D-Ala, and 104 ± 7 U mg-1 for the opposite direction. Comparison of Alr from S. coelicolor with orthologous enzymes from other bacteria, including the closely related d-cycloserine-resistant Alr from S. lavendulae, strongly suggests that structural features such as the hinge angle or the surface area between the monomers do not contribute to d-cycloserine resistance, and the molecular basis for resistance therefore remains elusive.


Asunto(s)
Alanina Racemasa/química , Alanina Racemasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Streptomyces coelicolor/enzimología , Alanina Racemasa/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Cicloserina/farmacología , Farmacorresistencia Bacteriana , Eliminación de Gen , Genes Bacterianos , Cinética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Streptomyces coelicolor/efectos de los fármacos , Streptomyces coelicolor/genética
8.
J Lipid Res ; 57(3): 451-63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724485

RESUMEN

The membrane lipid glucosylceramide (GlcCer) is continuously formed and degraded. Cells express two GlcCer-degrading ß-glucosidases, glucocerebrosidase (GBA) and GBA2, located in and outside the lysosome, respectively. Here we demonstrate that through transglucosylation both GBA and GBA2 are able to catalyze in vitro the transfer of glucosyl-moieties from GlcCer to cholesterol, and vice versa. Furthermore, the natural occurrence of 1-O-cholesteryl-ß-D-glucopyranoside (GlcChol) in mouse tissues and human plasma is demonstrated using LC-MS/MS and (13)C6-labeled GlcChol as internal standard. In cells, the inhibition of GBA increases GlcChol, whereas inhibition of GBA2 decreases glucosylated sterol. Similarly, in GBA2-deficient mice, GlcChol is reduced. Depletion of GlcCer by inhibition of GlcCer synthase decreases GlcChol in cells and likewise in plasma of inhibitor-treated Gaucher disease patients. In tissues of mice with Niemann-Pick type C disease, a condition characterized by intralysosomal accumulation of cholesterol, marked elevations in GlcChol occur as well. When lysosomal accumulation of cholesterol is induced in cultured cells, GlcChol is formed via lysosomal GBA. This illustrates that reversible transglucosylation reactions are highly dependent on local availability of suitable acceptors. In conclusion, mammalian tissues contain GlcChol formed by transglucosylation through ß-glucosidases using GlcCer as donor. Our findings reveal a novel metabolic function for GlcCer.


Asunto(s)
Colesterol/metabolismo , beta-Glucosidasa/metabolismo , Animales , Células COS , Chlorocebus aethiops , Femenino , Enfermedad de Gaucher/metabolismo , Glicosilación , Humanos , Masculino , Ratones , Enfermedades de Niemann-Pick/metabolismo , Células RAW 264.7
9.
Biochim Biophys Acta ; 1837(8): 1305-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24685428

RESUMEN

The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.


Asunto(s)
Citocromos c6/química , Citocromos f/química , Complejos Multiproteicos/química , Fotosíntesis , Cianobacterias/química , Cianobacterias/metabolismo , Citocromos c6/metabolismo , Citocromos f/metabolismo , Transporte de Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Complejos Multiproteicos/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas , Difracción de Rayos X
10.
Nucleic Acids Res ; 41(2): 1363-71, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23221644

RESUMEN

Repairing damaged DNA is essential for an organism's survival. UV damage endonuclease (UVDE) is a DNA-repair enzyme that can recognize and incise different types of damaged DNA. We present the structure of Sulfolobus acidocaldarius UVDE on its own and in a pre-catalytic complex with UV-damaged DNA containing a 6-4 photoproduct showing a novel 'dual dinucleotide flip' mechanism for recognition of damaged dipyrimidines: the two purines opposite to the damaged pyrimidine bases are flipped into a dipurine-specific pocket, while the damaged bases are also flipped into another cleft.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/química , Endodesoxirribonucleasas/química , Secuencia de Aminoácidos , ADN/química , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Metales/química , Modelos Moleculares , Datos de Secuencia Molecular , Dímeros de Pirimidina/metabolismo , Alineación de Secuencia , Sulfolobus acidocaldarius/enzimología
11.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 339-344, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36974967

RESUMEN

To determine a substructure from single-wavelength anomalous diffraction (SAD) data using Patterson or direct methods, the substructure-factor amplitude (|Fa|) is first estimated. Currently, the absolute value of the Bijvoet difference is widely used as an estimate of |Fa| values for SAD data. Here, an equation is derived from multivariate statistics and tested that takes into account the correlation between the observed positive (F+) and negative (F-) Friedel pairs and Fa along with measurement errors in the observed data. The multivariate estimation of |Fa| has been implemented in a new program, Afro. Results on over 180 test cases show that Afro provides a higher correlation to the final substructure-factor amplitudes (calculated from the refined, final substructures) than the Bijvoet differences and improves the robustness of direct-methods substructure detection.


Asunto(s)
Cristalografía por Rayos X
12.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 794-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22751664

RESUMEN

Potato serine protease inhibitor (PSPI) constitutes about 22% of the total amount of proteins in potato tubers (cv. Elkana), making it the most abundant protease inhibitor in the plant. PSPI is a heterodimeric double-headed Kunitz-type serine protease inhibitor that can tightly and simultaneously bind two serine proteases by mimicking the substrate of the enzyme with its reactive-site loops. Here, the crystal structure of PSPI is reported, representing the first heterodimeric double-headed Kunitz-type serine protease inhibitor structure to be determined. PSPI has a ß-trefoil fold and, based on the structure, two reactive-site loops bearing residues Phe75 and Lys95 were identified.


Asunto(s)
Proteínas de Plantas/química , Inhibidores de Serina Proteinasa/química , Solanum tuberosum/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Alineación de Secuencia , Inhibidores de Serina Proteinasa/aislamiento & purificación
13.
Chemphyschem ; 13(6): 1569-75, 2012 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-22407519

RESUMEN

Genomic DNA in bacteria exists in a condensed state, which exhibits different biochemical and biophysical properties from a dilute solution. DNA was concentrated on streptavidin-covered single-walled carbon nanotubes (Strep-SWNTs) through biotin-streptavidin interactions. We reasoned that confining DNA within a defined space through mechanical constraints, rather than by manipulating buffer conditions, would more closely resemble physiological conditions. By ensuring a high streptavidin loading on SWNTs of about 1 streptavidin tetramer per 4 nm of SWNT, we were able to achieve dense DNA binding. DNA is bound to Strep-SWNTs at a tunable density and up to as high as 0.5 mg mL(-1) in solution and 29 mg mL(-1) on a 2D surface. This platform allows us to observe the aggregation behavior of DNA at high concentrations and the counteracting effects of HU protein (a histone-like protein from Escherichia coli strain U93) on the DNA aggregates. This provides an in vitro model for studying DNA-DNA and DNA-protein interactions at a high DNA concentration.


Asunto(s)
ADN/química , Nanotubos de Carbono/química , Proteínas/química , Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Unión al ADN/química
14.
Artículo en Inglés | MEDLINE | ID: mdl-22232169

RESUMEN

Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents. The crystals had unit-cell parameters a = b = 142.03, c = 250.19 Å and diffracted to 2.9 Å resolution on beamline ID14-1 at the European Synchrotron Radiation Facility.


Asunto(s)
Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Cristalización , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/aislamiento & purificación , Proteínas de Unión al ADN/aislamiento & purificación , Humanos , Unión Proteica , Factores de Transcripción/aislamiento & purificación
15.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048148

RESUMEN

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Asunto(s)
Nube Computacional , Programas Informáticos , Cristalografía por Rayos X , Sustancias Macromoleculares/química
16.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 345-54, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460453

RESUMEN

Density modification often suffers from an overestimation of phase quality, as seen by escalated figures of merit. A new cross-validation-based method to address this estimation bias by applying a bias-correction parameter 'ß' to maximum-likelihood phase-combination functions is proposed. In tests on over 100 single-wavelength anomalous diffraction data sets, the method is shown to produce much more reliable figures of merit and improved electron-density maps. Furthermore, significantly better results are obtained in automated model building iterated with phased refinement using the more accurate phase probability parameters from density modification.


Asunto(s)
Cristalografía por Rayos X/métodos , Automatización de Laboratorios , Funciones de Verosimilitud , Modelos Moleculares , Probabilidad
17.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 331-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460451

RESUMEN

For its first release in 2004, CRANK was shown to effectively detect and phase anomalous scatterers from single-wavelength anomalous diffraction data. Since then, CRANK has been significantly improved and many more structures can be built automatically with single- or multiple-wavelength anomalous diffraction or single isomorphous replacement with anomalous scattering data. Here, the new algorithms that have been developed that have led to these substantial improvements are discussed and CRANK's performance on over 100 real data sets is shown. The latest version of CRANK is freely available for download at http://www.bfsc.leidenuniv.nl/software/crank/ and from CCP4 (http://www.ccp4.ac.uk/).


Asunto(s)
Algoritmos , Procesamiento Automatizado de Datos/métodos , Diseño de Software , Internet
18.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 355-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460454

RESUMEN

This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Šcan be achieved thanks to low-resolution refinement tools such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, `jelly-body' restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback-Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.


Asunto(s)
Cristalografía por Rayos X/métodos , Programas Informáticos , Anisotropía , Funciones de Verosimilitud
19.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 235-42, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460441

RESUMEN

The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallography is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/análisis , Diseño de Software , Automatización de Laboratorios , Conducta Cooperativa , Cristalografía por Rayos X/instrumentación
20.
Open Biol ; 11(2): 200409, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622102

RESUMEN

In most bacteria, cell division begins with the polymerization of the GTPase FtsZ at mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here, we show that various amino acid (aa) substitutions in the highly conserved SsgB protein result in ectopically placed septa that sever spores diagonally or along the long axis, perpendicular to the division plane. Fluorescence microscopy revealed that between 3.3% and 9.8% of the spores of strains expressing SsgB E120 variants were severed ectopically. Biochemical analysis of SsgB variant E120G revealed that its interaction with FtsZ had been maintained. The crystal structure of Streptomyces coelicolor SsgB was resolved and the key residues were mapped on the structure. Notably, residue substitutions (V115G, G118V, E120G) that are associated with septum misplacement localize in the α2-α3 loop region that links the final helix and the rest of the protein. Structural analyses and molecular simulation revealed that these residues are essential for maintaining the proper angle of helix α3. Our data suggest that besides altering FtsZ, aa substitutions in the FtsZ-recruiting protein SsgB also lead to diagonally or longitudinally divided cells in Streptomyces.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , Streptomyces/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas del Citoesqueleto/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Streptomyces/genética , Streptomyces/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA