Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genome Res ; 29(2): 250-260, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30655337

RESUMEN

Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.


Asunto(s)
Mitosis/genética , Nucleosomas/química , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Cromosomas de los Mamíferos , Fijadores , Formaldehído , Ratones , Receptores de Estrógenos/metabolismo , Succinimidas
2.
Bioessays ; 38(11): 1130-1140, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27599465

RESUMEN

In this review, we discuss a novel on-site remodeling function that is mediated by the H2A-ubiquitin binding protein ZRF1. ZRF1 facilitates the remodeling of multiprotein complexes at chromatin and lies at the heart of signaling processes that occur at DNA damage sites and during transcriptional activation. In nucleotide excision repair ZRF1 remodels E3 ubiquitin ligase complexes at the damage site. During embryonic stem cell differentiation, it contributes to retinoic acid-mediated gene activation by altering the subunit composition of the Mediator complex. We postulate that ZRF1 operates in conjunction with cellular remodeling machines and suggest that on-site remodeling might be a hallmark of many chromatin-associated signaling pathways. We discuss yet unexplored functions of ZRF1-mediated remodeling in replication and double strand break repair. In conclusion, we postulate that on-site remodeling of multiprotein complexes is essential for the timing of chromatin signaling processes.


Asunto(s)
Ensamble y Desensamble de Cromatina , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Oncogénicas/metabolismo , Activación Transcripcional , Animales , Humanos , Chaperonas Moleculares , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN
3.
Nat Struct Mol Biol ; 31(3): 513-522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38196033

RESUMEN

Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mitosis/genética , Secuencias Reguladoras de Ácidos Nucleicos , Células Madre Embrionarias de Ratones/metabolismo
4.
Elife ; 82019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31599722

RESUMEN

The access of Transcription Factors (TFs) to their cognate DNA binding motifs requires a precise control over nucleosome positioning. This is especially important following DNA replication and during mitosis, both resulting in profound changes in nucleosome organization over TF binding regions. Using mouse Embryonic Stem (ES) cells, we show that the TF CTCF displaces nucleosomes from its binding site and locally organizes large and phased nucleosomal arrays, not only in interphase steady-state but also immediately after replication and during mitosis. Correlative analyses suggest this is associated with fast gene reactivation following replication and mitosis. While regions bound by other TFs (Oct4/Sox2), display major rearrangement, the post-replication and mitotic nucleosome positioning activity of CTCF is not unique: Esrrb binding regions are also characterized by persistent nucleosome positioning. Therefore, selected TFs such as CTCF and Esrrb act as resilient TFs governing the inheritance of nucleosome positioning at regulatory regions throughout the cell-cycle.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Replicación del ADN , Células Madre Embrionarias/fisiología , Mitosis , Nucleosomas/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Activación Transcripcional
5.
Oncotarget ; 9(47): 28666-28690, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983888

RESUMEN

Breast cancer is one of the most common malignancies among women which is often treated with hormone therapy and chemotherapy. Despite the improvements in detection and treatment of breast cancer, the vast majority of breast cancer patients are diagnosed with metastatic disease either at the beginning of the disease or later during treatment. Still, the molecular mechanisms causing a therapy resistant metastatic breast cancer are still elusive. In the present study we addressed the function of the transcriptional activator ZRF1 during breast cancer progression. We provide evidence that ZRF1 plays an essential role for the early metastatic events in vitro and acts like a tumor suppressor protein during the progression of breast invasive ductal carcinoma into a more advanced stage. Hence, depletion of ZRF1 results in the acquisition of metastatic behavior by facilitating the initiation of the metastatic cascade, notably for cell adhesion, migration and invasion. Furthermore absence of ZRF1 provokes endocrine resistance via misregulation of cell death and cell survival related pathways. Taken together, we have identified ZRF1 as an important regulator of breast cancer progression that holds the potential to be explored for new treatment strategies in the future.

6.
Cell Cycle ; 15(11): 1479-93, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27096886

RESUMEN

Mediator is considered an enhancer of RNA-Polymerase II dependent transcription but its function and regulation in pluripotent mouse embryonic stem cells (mESCs) remains unresolved. One means of controlling the function of Mediator is provided by the binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to the core Mediator. Here we report that Med12 operates together with PRC1 to silence key developmental genes in pluripotency. At the molecular level, while PRC1 represses genes it is also required to assemble ncRNA containing Med12-Mediator complexes. In the course of cellular differentiation the H2A ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the association of Cdk8 with Mediator. This remodeling of Mediator-associated protein complexes converts Mediator from a transcriptional repressor to a transcriptional enhancer, which then mediates ncRNA-dependent activation of Polycomb target genes. Altogether, our data reveal how the interplay of PRC1, ncRNA and Mediator complexes controls pluripotency and cellular differentiation.


Asunto(s)
Complejo Mediador/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas del Grupo Polycomb/genética , ARN no Traducido/genética , Activación Transcripcional , Animales , Diferenciación Celular , Línea Celular , Ciclina C/genética , Ciclina C/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN , Perfilación de la Expresión Génica , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Complejo Mediador/metabolismo , Ratones , Chaperonas Moleculares , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/metabolismo , Proteínas de Unión al ARN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA