Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592827

RESUMEN

Salt stress is one of the most severe environmental stresses limiting the productivity of crops, including rice. However, there is a lack of information on how salt-stress sensitivity varies across different developmental stages in rice. In view of this, a comparative evaluation of contrasting rice varieties CSR36 (salt tolerant) and Jaya (salt sensitive) was conducted, wherein NaCl stress (50 mM) was independently given either at seedling (S-stage), tillering (T-stage), flowering (F-stage), seed-setting (SS-stage) or throughout plant growth, from seedling till maturity. Except for S-stage, CSR36 exhibited improved NaCl stress tolerance than Jaya, at all other tested stages. Principal component analysis (PCA) revealed that the improved NaCl stress tolerance in CSR36 coincided with enhanced activities/levels of enzymatic/non-enzymatic antioxidants (root ascorbate peroxidase for T- (2.74-fold) and S+T- (2.12-fold) stages and root catalase for F- (5.22-fold), S+T- (2.10-fold) and S+T+F- (2.61-fold) stages) and higher accumulation of osmolytes (shoot proline for F-stage (5.82-fold) and S+T+F- (2.31-fold) stage), indicating better antioxidant capacitance and osmotic adjustment, respectively. In contrast, higher shoot accumulation of Na+ (14.25-fold) and consequent increase in Na+/K+ (14.56-fold), Na+/Mg+2 (13.09-fold) and Na+/Ca+2 (8.38-fold) ratio in shoot, were identified as major variables associated with S-stage salinity in Jaya. Higher root Na+ and their associated ratio were major deriving force for other stage specific and combined stage salinity in Jaya. In addition, CSR36 exhibited higher levels of Fe3+, Mn2+ and Co3+ and lower Cl- and SO42-, suggesting its potential to discriminate essential and non-essential nutrients, which might contribute to NaCl stress tolerance. Taken together, the findings provided the framework for stage-specific salinity responses in rice, which will facilitate crop-improvement programs for specific ecological niches, including coastal regions.

2.
J Nanosci Nanotechnol ; 12(7): 5914-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22966680

RESUMEN

A colorimetric biosensor for convenient quantification of ethanol and methanol is described. The biosensor utilizes a 'one-pot' nanocomposite consisting of Fe3O4 magnetic nanoparticles (MNPs) and alcohol oxidase (Al Ox) simultaneously entrapped in large pore sized mesocellular silica. Al Ox immobilized in the silica generates H2O2 in the presence of alcohol in a sample, which subsequently activates MNPs in the mesopores of the silica to convert a colorimetric substrate into a colored product. Using this strategy, a target alcohol was specifically detected through a very convenient colorimetric signal resulting from the combined reactions. This strategy enabled successful sensing of ethanol and methanol in a linear concentration range from 100 to 500 microM with a detection limit as low as 25 microM by employing 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) as a peroxidase substrate. Along with excellent reusability via simple magnetic capturing, enhanced operational stability was achieved by the nanocomposite system. The present nanocomposite would serve as a novel platform for rapid and convenient analysis of alcohol.

3.
Nanotechnology ; 22(39): 395706, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21896977

RESUMEN

The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.


Asunto(s)
Materiales Biocompatibles/química , Oro/química , Nanopartículas/química , Fosfatos/química , Transferrina/química , Materiales Biocompatibles/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Supervivencia Celular , Oro/metabolismo , Humanos , Nanopartículas/análisis , Nanopartículas/ultraestructura , Fosfatos/metabolismo , Propiedades de Superficie , Transferrina/metabolismo
4.
Anal Chim Acta ; 851: 87-94, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25440669

RESUMEN

A visual strip has been developed for sensing iron in different aqueous samples like natural water and fruit juices. The sensor has been synthesized by UV-radiation induced graft polymerization of acrylamide monomer in microporous poly(propylene) base. For physical immobilization of iron selective reagent, the in situ polymerization of acrylamide has been carried out in the presence of 1,10-phenanthroline. The loaded strip on interaction with Fe(II) in aqueous solution turned into orange red color and the intensity of the color was found to be directly proportional to the amount of Fe(II) in the aqueous sample. The minimal sensor response with naked eye was found for 50ngmL(-1) of Fe in 15min of interaction. However, as low as 20ngmL(-1) Fe could be quantified using a spectrophotometer. The detection limit calculated using the 3s/S criteria, where 's' is the standard deviation of the absorbance of blank reagent loaded strip and 'S' is the slope of the linear calibration plot, was 1.0ngmL(-1). The strip was applied to measure Fe in a variety of samples such as ground water and fruit juices.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Hierro/análisis , Tiras Reactivas/química , Agua/química , Resinas Acrílicas/química , Límite de Detección , Modelos Moleculares , Conformación Molecular , Polimerizacion , Polipropilenos/química , Control de Calidad
5.
Biosens Bioelectron ; 26(2): 667-73, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20675117

RESUMEN

A novel optical biosensor for detecting target DNA, utilizing gold nanorods (GNRs) as molecular probes is demonstrated. This sensor is based on simultaneous biorecognition-mediated hybridization of target DNA in a sandwich type manner with two different capture probe DNA sequences modified separately with identical sets of GNRs, which leads to aggregation of GNRs. The hybridization induced aggregation as revealed by TEM analysis, promotes the modulation of surface plasmon resonance of GNRs, which forms the basis of complementary target DNA detection from the Chlamydia trachomatis pathogen. Thermally induced reversible dissociation of hybridized DNA is demonstrated by melting analysis. The present sensing strategy is successfully demonstrated by detecting PCR amplified C. trachomatis pathogen gene isolated from human urine sample in a concentration range of 0.25-20 nM. Furthermore, this sensor displays excellent specificity by discriminating the target DNA versus other non-specific pathogenic genes.


Asunto(s)
Técnicas Biosensibles/instrumentación , Chlamydia trachomatis/genética , Chlamydia trachomatis/aislamiento & purificación , ADN Bacteriano/genética , Técnicas de Sonda Molecular/instrumentación , Nanotubos/química , Resonancia por Plasmón de Superficie/instrumentación , ADN Bacteriano/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Oro/química , Nanotubos/ultraestructura , Dispositivos Ópticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA