Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712060

RESUMEN

Inflammation has enduring impacts on organismal immunity. However, the precise mechanisms by which tissue-restricted inflammation conditions systemic responses are poorly understood. Here, we leveraged a highly compartmentalized model of skin inflammation and identified a surprising type I interferon (IFN)- mediated activation of hematopoietic stem/progenitor cells (HSPCs) that results in profound changes to systemic host responses. Post-inflamed mice were protected from atherosclerosis and had worse outcomes following influenza virus infection. This IFN-mediated HSPC modulation was dependent on IFNAR signaling and could be recapitulated with the administration of recombinant IFNα. Importantly, the transfer of post-inflamed HSPCs was sufficient to transmit the immune suppression phenotype. IFN modulation of HSPCs was rooted both in long-term changes in chromatin accessibility and the emergence of an IFN- responsive functional state from multiple progenitor populations. Collectively, our data reveal the profound and enduring effect of transient inflammation and more specifically type I IFN signaling and set the stage for a more nuanced understanding of HSPC functional modulation by peripheral immune signals.

2.
Cancer Discov ; 12(10): 2392-2413, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35924979

RESUMEN

Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of mutated preleukemic cells. Individuals with CH are at an increased risk of developing hematopoietic malignancies. Here, we describe a novel animal model carrying a recurrent TET2 missense mutation frequently found in patients with CH and leukemia. In a fashion similar to CH, animals show signs of disease late in life when they develop a wide range of myeloid neoplasms, including acute myeloid leukemia (AML). Using single-cell transcriptomic profiling of the bone marrow, we show that disease progression in aged animals correlates with an enhanced inflammatory response and the emergence of an aberrant inflammatory monocytic cell population. The gene signature characteristic of this inflammatory population is associated with poor prognosis in patients with AML. Our study illustrates an example of collaboration between a genetic lesion found in CH and inflammation, leading to transformation and the establishment of blood neoplasms. SIGNIFICANCE: Progression from a preleukemic state to transformation, in the presence of TET2 mutations, is coupled with the emergence of inflammation and a novel population of inflammatory monocytes. Genes characteristic of this inflammatory population are associated with the worst prognosis in patients with AML. These studies connect inflammation to progression to leukemia. See related commentary by Pietras and DeGregori, p. 2234 . This article is highlighted in the In This Issue feature, p. 2221.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Animales , Hematopoyesis/genética , Inflamación/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología
3.
JCI Insight ; 5(3)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32051338

RESUMEN

The Notch signaling pathway mediates cell-cell communication regulating cell differentiation and proliferation and cell fate decisions in various tissues. In the urinary bladder, Notch acts as a tumor suppressor in mice, while mutations in Notch pathway components have been identified in human bladder cancer as well. Here we report that the genetic inactivation of Notch in mice leads to downregulation of cell-cell and cell-ECM interaction components, including proteins previously implicated in interstitial cystitis/bladder pain syndrome (IC/BPS), structural defects and mucosal sloughing, inflammation, and leaky urine-blood barrier. Molecular profiling of ailing mouse bladders showed similarities with IC/BPS patient tissue, which also presented low Notch pathway activity as indicated by reduced expression of canonical Notch targets. Urothelial integrity was reconstituted upon exogenous reactivation of the Notch pathway, implying a direct involvement of Notch. Despite damage and inflammation, urothelial cells failed to proliferate, uncovering a possible role for α4 integrin in urothelial homeostasis. Our data uncover a broad role for Notch in bladder homeostasis involving urothelial cell crosstalk with the microenvironment.


Asunto(s)
Receptores Notch/metabolismo , Vejiga Urinaria/patología , Urotelio/patología , Animales , Cistitis/metabolismo , Cistitis/patología , Ratones , Transducción de Señal , Vejiga Urinaria/metabolismo , Urotelio/metabolismo
4.
Nat Commun ; 7: 11914, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27320313

RESUMEN

The urothelium is a specialized epithelium that lines the urinary tract. It consists of three different cell types, namely, basal, intermediate and superficial cells arranged in relatively distinct cell layers. Normally, quiescent, it regenerates fast upon injury, but the regeneration process is not fully understood. Although several reports have indicated the existence of progenitors, their identity and exact topology, as well as their role in key processes such as tissue regeneration and carcinogenesis have not been clarified. Here we show that a minor subpopulation of basal cells, characterized by the expression of keratin 14, possesses self-renewal capacity and also gives rise to all cell types of the urothelium during natural and injury-induced regeneration. Moreover, these cells represent cells of origin of urothelial cancer. Our findings support the hypothesis of basally located progenitors with profound roles in urothelial homoeostasis.


Asunto(s)
Biomarcadores de Tumor/genética , Transformación Celular Neoplásica/genética , Células Epiteliales/metabolismo , Queratina-14/genética , Regeneración/genética , Vejiga Urinaria/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ciclofosfamida/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Queratina-14/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Urotelio/efectos de los fármacos , Urotelio/metabolismo , Urotelio/patología , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA