Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(3): 624-632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145984

RESUMEN

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.


Asunto(s)
Analgésicos Opioides , Metadona , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/efectos de los fármacos , Animales , Metadona/farmacología , Masculino , Analgésicos Opioides/farmacología , Humanos , Ratones , Dopamina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ligandos , Estereoisomerismo
2.
J Chem Inf Model ; 63(18): 5927-5935, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37644761

RESUMEN

(-)-Δ9-trans-tetrahydrocannabinol (THC), which is the principal psychoactive constituent of Cannabis, mediates its action by binding to two members of the G-protein-coupled receptor (GPCR) family: the cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors. Molecular dynamics simulations showed that the pentyl chain of THC could adopts an I-shape conformation, filling an intracellular cavity between Phe3.36 and Trp6.48 for initial agonist-induced receptor activation, in CB1R but not in CB2R. This cavity opens to the five-carbon chain of THC by the conformational change of the γ-branched, flexible, Leu6.51 side chain of CB1R, which is not feasible by the ß-branched, mode rigid, Val6.51 side chain of CB2R. In agreement with our computational results, THC could not decrease the forskolin-induced cAMP levels in cells expressing mutant CB1RL6.51V receptor but could activate the mutant CB2RV6.51L receptor as efficiently as wild-type CB1R. Additionally, JWH-133, a full CB2R agonist, contains a branched dimethyl moiety in the ligand chain that bridges Phe3.36 and Val6.51 for receptor activation. In this case, the substitution of Val6.51 to Leu in CB2R makes JWH-133 unable to activate CB2RV6.51L. In conclusion, our combined computational and experimental results have shown that the amino acid at position 6.51 is a key additional player in the initial mechanism of activation of GPCRs that recognize signaling molecules derived from lipid species.


Asunto(s)
Cannabinoides , Dronabinol , Receptores de Cannabinoides , Dronabinol/farmacología , Cannabinoides/farmacología , Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
3.
Pharmacol Res ; 182: 106322, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750299

RESUMEN

Recent studies have proposed that heteromers of µ-opioid receptors (MORs) and galanin Gal1 receptors (Gal1Rs) localized in the mesencephalon mediate the dopaminergic effects of opioids. The present study reports converging evidence, using a peptide-interfering approach combined with biophysical and biochemical techniques, including total internal reflection fluorescence microscopy, for a predominant homodimeric structure of MOR and Gal1R when expressed individually, and for their preference to form functional heterotetramers when co-expressed. Results show that a heteromerization-dependent change in the Gal1R homodimeric interface leads to a switch in G-protein coupling from inhibitory Gi to stimulatory Gs proteins. The MOR-Gal1R heterotetramer, which is thus bound to Gs via the Gal1R homodimer and Gi via the MOR homodimer, provides the framework for a canonical Gs-Gi antagonist interaction at the adenylyl cyclase level. These novel results shed light on the intense debate about the oligomeric quaternary structure of G protein-coupled receptors, their predilection for heteromer formation, and the resulting functional significance.


Asunto(s)
Analgésicos Opioides , Galanina , Analgésicos Opioides/farmacología , Mesencéfalo , Péptidos , Receptores Opioides
4.
Pharmacol Res ; 185: 106476, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182040

RESUMEN

A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.


Asunto(s)
Discinesias , Levodopa , Animales , Ratas , Ratones , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D1/agonistas , Dopamina , Receptores Acoplados a Proteínas G , Ligandos
5.
J Chem Inf Model ; 62(22): 5771-5779, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36302505

RESUMEN

Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 agonist to the cannabinoid CB2 receptor (CB2R). In CB2R, the N-terminus and extracellular loop 2 fold over the ligand binding pocket, blocking access to the binding cavity from the extracellular environment. We, thus, hypothesized that the binding pathway is a multistage process consisting of the hydrophobic ligand diffusing in the lipid bilayer to contact a lipid-facing vestibule, from which the ligand enters an allosteric site inside the transmembrane bundle through a tunnel formed between TMs 1 and 7 and finally moving from the allosteric to the orthosteric binding cavity. This pathway was experimentally validated by the Ala2827.36Phe mutation that blocks the entrance of the ligand, as JWH-133 was not able to decrease the forskolin-induced cAMP levels in cells expressing the mutant receptor. This proposed ligand entry pathway defines transient binding sites that are potential cavities for the design of synthetic modulators.


Asunto(s)
Cannabinoides , Membrana Dobles de Lípidos , Ligandos , Membrana Dobles de Lípidos/química , Receptores de Cannabinoides/metabolismo , Mutación Puntual , Sitios de Unión , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo , Unión Proteica
6.
Cell Mol Life Sci ; 78(8): 3957-3968, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580270

RESUMEN

Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.


Asunto(s)
Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Receptores Purinérgicos P1/química , Transducción de Señal
7.
BMC Biol ; 19(1): 21, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33546694

RESUMEN

BACKGROUND: Olfactory receptors (ORs) constitute a large family of sensory proteins that enable us to recognize a wide range of chemical volatiles in the environment. By contrast to the extensive information about human olfactory thresholds for thousands of odorants, studies of the genetic influence on olfaction are limited to a few examples. To annotate on a broad scale the impact of mutations at the structural level, here we analyzed a compendium of 119,069 natural variants in human ORs collected from the public domain. RESULTS: OR mutations were categorized depending on their genomic and protein contexts, as well as their frequency of occurrence in several human populations. Functional interpretation of the natural changes was estimated from the increasing knowledge of the structure and function of the G protein-coupled receptor (GPCR) family, to which ORs belong. Our analysis reveals an extraordinary diversity of natural variations in the olfactory gene repertoire between individuals and populations, with a significant number of changes occurring at the structurally conserved regions. A particular attention is paid to mutations in positions linked to the conserved GPCR activation mechanism that could imply phenotypic variation in the olfactory perception. An interactive web application (hORMdb, Human Olfactory Receptor Mutation Database) was developed for the management and visualization of this mutational dataset. CONCLUSION: We performed topological annotations and population analysis of natural variants of human olfactory receptors and provide an interactive application to explore human OR mutation data. We envisage that the utility of this information will increase as the amount of available pharmacological data for these receptors grow. This effort, together with ongoing research in the study of genetic changes in other sensory receptors could shape an emerging sensegenomics field of knowledge, which should be considered by food and cosmetic consumer product manufacturers for the benefit of the general population.


Asunto(s)
Mutación , Receptores Odorantes/genética , Humanos , Receptores Odorantes/metabolismo
8.
Addict Biol ; 26(5): e13017, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33559278

RESUMEN

Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.


Asunto(s)
Cocaína/farmacología , Hambre/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Dopamina/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Masculino , Ratones , Neuronas/efectos de los fármacos , Ratas , Receptores de Dopamina D1/metabolismo , Receptores de Ghrelina/metabolismo , Receptores sigma , Receptor Sigma-1
9.
BMC Biol ; 18(1): 9, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973708

RESUMEN

BACKGROUND: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTS: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONS: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores Purinérgicos P1/metabolismo , Animales , Masculino , Ratas , Ratas Wistar , Transmisión Sináptica , Transfección
10.
Chemistry ; 26(68): 15839-15842, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32794211

RESUMEN

Single chemical entities with potential to simultaneously interact with two binding sites are emerging strategies in medicinal chemistry. We have designed, synthesized and functionally characterized the first bitopic ligands for the CB2 receptor. These compounds selectively target CB2 versus CB1 receptors. Their binding mode was studied by molecular dynamic simulations and site-directed mutagenesis.


Asunto(s)
Receptor Cannabinoide CB2 , Sitios de Unión , Ligandos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Receptor Cannabinoide CB2/química , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo
11.
Bioinformatics ; 34(22): 3857-3863, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29850769

RESUMEN

Motivation: Bivalent ligands are increasingly important such as for targeting G protein-coupled receptor (GPCR) dimers or proteolysis targeting chimeras (PROTACs). They contain two pharmacophoric units that simultaneously bind in their corresponding binding sites, connected with a spacer chain. Here, we report a molecular modelling tool that links the pharmacophore units via the shortest pathway along the receptors van der Waals surface and then scores the solutions providing prioritization for the design of new bivalent ligands. Results: Bivalent ligands of known dimers of GPCRs, PROTACs and a model bivalent antibody/antigen system were analysed. The tool could rapidly assess the preferred linker length for the different systems and recapitulated the best reported results. In the case of GPCR dimers the results suggest that in some cases these ligands might bind to a secondary binding site at the extracellular entrance (vestibule or allosteric site) instead of the orthosteric binding site. Availability and implementation: Freely accessible from the Molecular Operating Environment svl exchange server (https://svl.chemcomp.com/). Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Computadores , Sitio Alostérico , Sitios de Unión , Ligandos , Modelos Moleculares
12.
PLoS Comput Biol ; 14(1): e1005945, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324768

RESUMEN

Pungent chemical compounds originating from decaying tissue are strong drivers of animal behavior. Two of the best-characterized death smell components are putrescine (PUT) and cadaverine (CAD), foul-smelling molecules produced by decarboxylation of amino acids during decomposition. These volatile polyamines act as 'necromones', triggering avoidance or attractive responses, which are fundamental for the survival of a wide range of species. The few studies that have attempted to identify the cognate receptors for these molecules have suggested the involvement of the seven-helix trace amine-associated receptors (TAARs), localized in the olfactory epithelium. However, very little is known about the precise chemosensory receptors that sense these compounds in the majority of organisms and the molecular basis of their interactions. In this work, we have used computational strategies to characterize the binding between PUT and CAD with the TAAR6 and TAAR8 human receptors. Sequence analysis, homology modeling, docking and molecular dynamics studies suggest a tandem of negatively charged aspartates in the binding pocket of these receptors which are likely to be involved in the recognition of these small biogenic diamines.


Asunto(s)
Cadaverina/química , Diaminas/química , Putrescina/química , Olfato , Animales , Ácido Aspártico/química , Conducta Animal , Proteínas de Ciclo Celular/química , Biología Computacional , Simulación por Computador , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Nucleares/química , Mucosa Olfatoria/fisiología , Filogenia , Poliaminas/química , Unión Proteica , Receptores Acoplados a Proteínas G/química , Pez Cebra
13.
J Chem Inf Model ; 59(5): 2456-2466, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30811196

RESUMEN

The metabotropic glutamate 5 (mGlu5) receptor is a class C G protein-coupled receptor (GPCR) that is implicated in several CNS disorders making it a popular drug discovery target. Years of research have revealed allosteric mGlu5 ligands showing an unexpected complete switch in functional activity despite only small changes in their chemical structure, resulting in positive allosteric modulators (PAM) or negative allosteric modulators (NAM) for the same scaffold. Up to now, the origins of this effect are not understood, causing difficulties in a drug discovery context. In this work, experimental data was gathered and analyzed alongside docking and Molecular Dynamics (MD) calculations for three sets of PAM and NAM pairs. The results consistently show the role of specific interactions formed between ligand substituents and amino acid side chains that block or promote local movements associated with receptor activation. The work provides an explanation for how such small structural changes lead to remarkable differences in functional activity. While this work can greatly help drug discovery programs avoid these switches, it also provides valuable insight into the mechanisms of class C GPCR allosteric activation. Furthermore, the approach shows the value of applying MD to understand functional activity in drug design programs, even for such close structural analogues.


Asunto(s)
Regulación Alostérica , Receptor del Glutamato Metabotropico 5/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Receptor del Glutamato Metabotropico 5/química , Agua/metabolismo
14.
BMC Biol ; 16(1): 24, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29486745

RESUMEN

BACKGROUND: G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (ß-arrestin mediated) signaling. Adenosine has different affinities for A1R and A2AR, allowing the heteromeric receptor to detect its concentration by integrating the downstream Gi- and Gs-dependent signals. cAMP accumulation and ß-arrestin recruitment assays have shown that, within the complex, activation of A2AR impedes signaling via A1R. RESULTS: We examined the mechanism by which A1-A2AHet integrates Gi- and Gs-dependent signals. A1R blockade by A2AR in the A1-A2AHet is not observed in the absence of A2AR activation by agonists, in the absence of the C-terminal domain of A2AR, or in the presence of synthetic peptides that disrupt the heteromer interface of A1-A2AHet, indicating that signaling mediated by A1R and A2AR is controlled by both Gi and Gs proteins. CONCLUSIONS: We identified a new mechanism of signal transduction that implies a cross-communication between Gi and Gs proteins guided by the C-terminal tail of the A2AR. This mechanism provides the molecular basis for the operation of the A1-A2AHet as an adenosine concentration-sensing device that modulates the signals originating at both A1R and A2AR.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética
15.
PLoS Biol ; 13(7): e1002194, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26158621

RESUMEN

Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Dronabinol/efectos adversos , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Amnesia/inducido químicamente , Analgesia , Animales , Ansiedad/inducido químicamente , Encéfalo/metabolismo , Dimerización , Núcleo Dorsal del Rafe/efectos de los fármacos , Células HEK293 , Humanos , Hipotermia/inducido químicamente , Locomoción/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor de Serotonina 5-HT2A/efectos de los fármacos
16.
Nature ; 485(7398): 321-6, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437502

RESUMEN

Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.


Asunto(s)
Morfinanos/química , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Ratones , Modelos Moleculares , Morfinanos/metabolismo , Morfinanos/farmacología , Conformación Proteica , Multimerización de Proteína , Receptores Opioides mu/metabolismo , Solventes/química
17.
Chemistry ; 23(7): 1676-1685, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-27885731

RESUMEN

Despite more than three decades of intense effort, no anti-Ras therapies have reached clinical application. Contributing to this failure has been an underestimation of Ras complexity and a dearth of structural information. In this regard, recent studies have revealed the highly dynamic character of the Ras surface and the existence of transient pockets suitable for small-molecule binding, opening up new possibilities for the development of Ras modulators. Herein, a novel Ras inhibitor (compound 12) is described that selectively impairs mutated Ras activity in a reversible manner without significantly affecting wild-type Ras, reduces the Ras-guanosine triphosphate (GTP) levels, inhibits the activation of the mitogen-activated protein kinase (MAPK) pathway, and exhibits remarkable cytotoxic activity in Ras-driven cellular models. The use of molecular dynamics simulations and NMR spectroscopy experiments has enabled the molecular bases responsible for the interactions between compound 12 and Ras protein to be explored. The new Ras inhibitor binds partially to the GTP-binding region and extends into the adjacent hydrophobic pocket delimited by switch II. Hence, Ras inhibitor 12 could represent a new compound for the development of more efficacious drugs to target Ras-driven cancers; a currently unmet clinical need.

18.
BMC Biol ; 14: 26, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048449

RESUMEN

BACKGROUND: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. RESULTS: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. CONCLUSIONS: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Animales , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína
19.
Nature ; 463(7277): 108-12, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20054398

RESUMEN

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.


Asunto(s)
Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas de Receptores Adrenérgicos beta 2 , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Etanolaminas/farmacología , Fumarato de Formoterol , Humanos , Ligandos , Lisina/análogos & derivados , Lisina/metabolismo , Metilación , Modelos Moleculares , Proteínas Mutantes , Resonancia Magnética Nuclear Biomolecular , Propanolaminas/metabolismo , Propanolaminas/farmacología , Estructura Terciaria de Proteína/efectos de los fármacos , Electricidad Estática , Especificidad por Sustrato
20.
BMC Bioinformatics ; 16: 206, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26134144

RESUMEN

BACKGROUND: Protein sequence alignments and database search methods use standard scoring matrices calculated from amino acid substitution frequencies in general sets of proteins. These general-purpose matrices are not optimal to align accurately sequences with marked compositional biases, such as hydrophobic transmembrane regions found in membrane proteins. In this work, an amino acid substitution matrix (GPCRtm) is calculated for the membrane spanning segments of the G protein-coupled receptor (GPCR) rhodopsin family; one of the largest transmembrane protein family in humans with great importance in health and disease. RESULTS: The GPCRtm matrix reveals the amino acid compositional bias distinctive of the GPCR rhodopsin family and differs from other standard substitution matrices. These membrane receptors, as expected, are characterized by a high content of hydrophobic residues with regard to globular proteins. On the other hand, the presence of polar and charged residues is higher than in average membrane proteins, displaying high frequencies of replacement within themselves. CONCLUSIONS: Analysis of amino acid frequencies and values obtained from the GPCRtm matrix reveals patterns of residue replacements different from other standard substitution matrices. GPCRs prioritize the reactivity properties of the amino acids over their bulkiness in the transmembrane regions. A distinctive role is that charged and polar residues seem to evolve at different rates than other amino acids. This observation is related to the role of the transmembrane bundle in the binding of ligands, that in many cases involve electrostatic and hydrogen bond interactions. This new matrix can be useful in database search and for the construction of more accurate sequence alignments of GPCRs.


Asunto(s)
Sustitución de Aminoácidos , Aminoácidos/química , Proteínas de la Membrana/química , Receptores Acoplados a Proteínas G/química , Rodopsina/química , Secuencia de Aminoácidos , Biología Computacional , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA