Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Chem Res Toxicol ; 32(7): 1441-1448, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243981

RESUMEN

The influence of pesticide exposure in alteration of DNA methylation patterns of specific genes is still limited, specifically in natural antisense transcripts (NAT), such as the WRAP53α gene. The aim of this study was to determine the methylation of the WRAP53α gene in mestizo and indigenous populations as well as its relationship with internal (age, sex, and body mass index) and external factors (pesticide exposure and micronutrient intake). A cross-sectional study was conducted including 91 mestizo individuals without occupational exposure to pesticides, 164 mestizo urban sprayers and 189 indigenous persons without occupational exposure to pesticides. Acute pesticide exposure was evaluated by measurement of urinary dialkylphosphate (DAP) concentration by gas chromatograph coupled to a mass spectrometer. Anthropometric characteristics, unhealthy habits, and chronic pesticide exposure were assessed using a structured questionnaire. The frequency of macro- and micronutrient intake was determined using SNUT software. DNA methylation of the WRAP53α gene was determined by pyrosequencing of bisulfite-modified DNA. The mestizo sprayers group had the higher values of %5mC. In addition, this group had the most DAP urinary concentration with respect to the indigenous and reference groups. Bivariate analysis showed an association between %5mC of the WRAP53α gene with micronutrient intake and pesticide exposure in mestizo sprayers, whereas changes in %5mC of the WRAP53α gene was associated with body mass index in the indigenous group. These data suggest that the %5mC of the WRAP53α gene can be influenced by pesticide exposure and ethnicity in the study population, and changes in the WRAP53α gene might cause an important cell process disturbance.


Asunto(s)
Metilación de ADN/efectos de los fármacos , ADN/metabolismo , Chaperonas Moleculares/genética , Organofosfatos/toxicidad , Plaguicidas/toxicidad , Telomerasa/genética , Adulto , Estudios Transversales , ADN/sangre , Femenino , Fumigación/efectos adversos , Humanos , Masculino , México , Exposición Profesional/análisis , Organofosfatos/orina
2.
3 Biotech ; 14(5): 129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601881

RESUMEN

During and after the pandemic caused by the SARS-CoV-2 virus, the use of personal care products and disinfectants increased in universities worldwide. Among these, quaternary ammonium-based products stand out; these compounds and their intermediates caused substantial changes in the chemical composition of the wastewater produced by these institutions. For this reason, improvements and environmentally sustainable biological alternatives were introduced in the existing treatment systems so that these institutions could continue their research and teaching activities. For this reason, the objective of this study was to develop an improved culture medium to cultivate ammonium oxidising bacteria (AOB) to increase the biomass and use them in the treatment of wastewater produced in a faculty of sciences in Bogotá, D.C., Colombia. A Plackett Burman Experimental Design (PBED) and growth curves served for oligotrophic culture medium, and production conditions improved for the AOB. Finally, these bacteria were used with total heterotrophic bacteria (THB) for wastewater treatment in a pilot plant. Modification of base ammonium broth and culture conditions (6607 mg L-1 of (NH4)2SO4, 84 mg L-1 CaCO3, 40 mg L-1 MgSO4·7H2O, 40 mg L-1 CaCl2·2H2O and 200 mg L-1 KH2PO4, 10% (w/v) inoculum, no copper addition, pH 7.0 ± 0.2, 200 r.p.m., 30 days) favoured the growth of Nitrosomonas europea, Nitrosococcus oceani, and Nitrosospira multiformis with values of 8.23 ± 1.9, 7.56 ± 0.7 and 4.2 ± 0.4 Log10 CFU mL-1, respectively. NO2- production was 0.396 ± 0.0264, 0.247 ± 0.013 and 0.185 ± 0.003 mg L-1 for Nitrosomonas europea, Nitrosococcus oceani and Nitrosospira multiformis. After the 5-day wastewater treatment (WW) by co-inoculating the three studied bacteria in the wastewater (with their self-microorganisms), the concentrations of AOB and THB were 5.92 and 9.3 Log10 CFU mL-1, respectively. These values were related to the oxidative decrease of Chemical Oxygen Demand (COD), (39.5 mg L-1), Ammonium ion (NH4+), (6.5 mg L-1) Nitrite (NO2-), (2.0 mg L-1) and Nitrate (NO3-), (1.5 mg L-1), respectively in the five days of treatment. It was concluded, with the improvement of a culture medium and production conditions for three AOB through biotechnological strategies at the laboratory scale, being a promising alternative to bio-augment of the biomass of the studied bacteria under controlled conditions that allow the aerobic removal of COD and nitrogen cycle intermediates present in the studied wastewater. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03961-4.

3.
Hum Exp Toxicol ; 41: 9603271211063161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35067100

RESUMEN

The INK4-ARF locus includes the CDKN2B and CDKN2A genes and is functionally relevant in the regulation of both cell proliferation and senescence. Studies have reported modifications of DNA methylation in this locus by exposure to environmental contaminants including pesticides; however, until now, specific methylation profiles have not been reported in genetically conserved populations exposed to occupational pesticides. The aim of this study was to determine the methylation profiles of the CDKN2B and CDKN2A genes in a genetically conserved population exposed to pesticides. A cross-sectional and analytical study was carried out in 190 Huichol indigenous persons. Information related to pesticide exposure, diet and other variables were obtained through the use of a structured questionnaire. Blood and urine samples were collected for methylation test and dialkylphosphates (DAP) determination, respectively. DNA methylation was measured by the pyrosequencing of bisulfite-treated DNA and DAP concentrations by gas chromatography-tandem mass spectrometry (GC/MS). The most frequent metabolite in the population was dimethylthiophosphate. The farmer group presented a higher methylation percentage of CDKN2B than the non-farmer group, but no differences in CDKN2A were observed between groups. A positive correlation between methylation of CpG site 3 of CDKN2B and time working in the field was observed in the farmer group. An association between methylation percentage of CDKN2B and age was also observed in the non-farmer group. These results suggest that pesticide exposure and exposure time in Huichol indigenous individuals could modify the methylation pattern of the CDKN2B gene.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Metilación de ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Pueblos Indígenas/genética , Plaguicidas/toxicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Metilación de ADN/genética , Femenino , Humanos , Masculino , México , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA