Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Medicina (Kaunas) ; 59(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36676666

RESUMEN

Background and Objectives: Natural products are necessary sources for drug discovery and have contributed to cancer chemotherapy over the past few decades. Furthermore, substances derived from plants have fewer side effects. Chrysophanol is an anthraquinone derivative that is isolated from rhubarb. Although the anticancer effect of chrysophanol on several cancer cells has been reported, studies on the antitumor effect of chrysophanol on oral squamous-cell carcinoma (OSCC) cells have yet to be elucidated. Therefore, in this study, we investigated the anticancer effect of chrysophanol on OSCC cells (CAL-27 and Ca9-22) via apoptosis and autophagy, among the cell death pathways. Results: It was found that chrysophanol inhibited the growth and viability of CAL-27 and Ca9-22 and induced apoptosis through the intrinsic pathway. It was also found that chrysophanol activates autophagy-related factors (ATG5, beclin-1, and P62/SQSTM1) and LC3B conversion. That is, chrysophanol activated both apoptosis and autophagy. Here, we focused on the roles of chrysophanol-induced apoptosis and the autophagy pathway. When the autophagy inhibitor 3-MA and PI3K/Akt inhibitor were used to inhibit the autophagy induced by chrysophanol, it was confirmed that the rate of apoptosis significantly increased. Therefore, we confirmed that chrysophanol induces apoptosis and autophagy at the same time, and the induced autophagy plays a role in interfering with apoptosis processes. Conclusions: Therefore, the potential of chrysophanol as an excellent anticancer agent in OSCC was confirmed via this study. Furthermore, the combined treatment of drugs that can inhibit chrysophanol-induced autophagy is expected to have a tremendous synergistic effect in overcoming oral cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Proteínas Proto-Oncogénicas c-akt , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/uso terapéutico , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Autofagia , Línea Celular Tumoral , Proliferación Celular
2.
Small ; 16(16): e2000012, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32239653

RESUMEN

Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)-derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC-NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC-NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti-inflammatory and pro-endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery-derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.


Asunto(s)
Aterosclerosis/terapia , Células Madre Mesenquimatosas , Nanopartículas , Animales , Arterias Carótidas , Células Endoteliales , Humanos , Ligadura , Ratones , Porcinos
3.
Hippocampus ; 24(6): 628-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24449190

RESUMEN

Although there are many types of epilepsy, temporal lobe epilepsy (TLE) is probably in humans the most common and most often studied. TLE represents 40% of the total epilepsy form of the disease and is difficult to treat. Despite a wealth of descriptive data obtained from the disease history of patients, the EEG recording, imaging techniques, and histological studies, the epileptogenic process remains poorly understood. However, it is unlikely that a single factor or a single mechanism can cause many changes associated with this neuropathological phenomenon. MALDI mass spectrometry imaging (MSI) coupled to protein identification, because of its ability to study a wide range of molecules, appears to be suitable for the preparation of molecular profiles in TLE. Seven neuropeptides have been have been identified in Dental gyrus regions of the hippocampus in relation with TLE pathology. Shot-gun studies taking into account gender influence have been performed. Tissue microextraction from control (10) toward 10 TLE patients have been analyzed after trypsin digestion followed by separation on nanoLC coupled to LTQ orbitrap. From the shot-gun analyses, results confirmed the presence of specific neuropeptides precursors and receptors in TLE patients as well as proteins involved in axons regeneration including neurotrophins, ECM proteins, cell surface proteins, membrane proteins, G-proteins, cytoskeleton proteins and tumor suppressors. Among the tumor suppressors identified, the Leucine-rich glioma inactivated 1 (LGI1) protein was found. LGI1 gene recently been demonstrated being implicated in heritability of TLE. We have also demonstrate the presence a complete profile of tumor suppressors in TLE patients, 7 have been identified. Refining this analysis taken into account the gender influence in both control and in TLE reflected the presence of specific proteins between male and female and thus mechanisms in pathology development could be completely different.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Proteómica/métodos , Adulto , Giro Dentado/metabolismo , Giro Dentado/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Hipocampo/cirugía , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Persona de Mediana Edad , Proteínas/metabolismo , Caracteres Sexuales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Adulto Joven
4.
Cell Prolif ; : e13662, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803033

RESUMEN

Secondary atrophic rhinitis (AR), a consequence of mucosal damage during nasal surgeries, significantly impairs patient quality of life. The lack of effective, lasting treatments underscores the need for alternative therapeutic strategies. A major impediment in advancing research is the scarcity of studies focused on secondary AR. Our study addresses this gap by developing an animal model that closely mirrors the histopathological changes observed in patients with secondary AR. These changes include squamous metaplasia, goblet cell hyperplasia, submucosal fibrosis, and glandular atrophy. Upon administering human nasal turbinate stem cells embedded in collagen type I hydrogel in these models, we observed ciliary regeneration. This finding suggests the potential therapeutic benefit of this approach. Our animal models not only emulate the clinical manifestations of secondary AR but also serve as valuable tools for evaluating the efficacy of cell-based biotechnological interventions.

5.
RSC Adv ; 13(2): 1115-1124, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686942

RESUMEN

Sialyllactose (SL) is the most abundant acidic oligosaccharide in human breast milk and plays a primary role in various biological processes. Recently, SL has attracted attention as an excellent dietary supplement for arthritis because it is effective in cartilage protection and treatment. Despite the superior function of SL, there are few pharmacological studies of SL according to blood concentrations in arthritis models. In this study, we investigated quantitative changes in SL and sialic acids in the plasma obtained from mini-pigs with osteoarthritis throughout exogenous administration of SL using liquid chromatography-multiple reaction monitoring mass spectrometry. Plasma concentrations of SL and sialic acids in the SL-fed group showed a significant difference compared to the control group. Mini pigs were fed only Neu5Ac bound to SL, but the concentration patterns of the two types of sialic acid, Neu5Ac and Neu5Gc, were similar. In addition, the relative mRNA expression level of matrix metalloproteinases (MMPs), which is known as a critical factor in cartilage matrix degradation, was remarkably decreased in the synovial membrane of the SL-fed group. Consequently, the temporal quantitative profiling suggests that dietary SL can be metabolized and utilized in the body and may protect against cartilage degradation by suppressing MMP expression during osteoarthritis progression.

6.
Biomed Pharmacother ; 168: 115689, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852099

RESUMEN

GNE myopathy, caused by biallelic mutations in the GNE gene, is characterized by initial ankle dorsiflexor weakness and rimmed vacuoles in the muscle histopathology, resulting in reduced sialic acid production. Sialyllactose is a source of sialic acid. We performed a pilot clinical trial to analyze the pharmacokinetic properties of 6'-sialyllactose (6SL) and evaluated the safety, and efficacy of oral 6SL in patients with GNE myopathy. Ten participants were in the pharmacokinetic study, and 20 in the subsequent clinical trial. For the pharmacokinetic study, participants were administered either 3 g (low-dose) or 6 g (high-dose) of 6SL in a single dose. Plasma concentrations of 6SL, sialic acid, and sialic acid levels on the surface of red blood cells were periodically assessed in blood samples. Patients were randomly allocated to test (low- and high-dose groups) or placebo groups for the trial. Motor function, ambulation, plasma 6SL and sialic acid concentrations, GNE myopathy-functional activity scale scores, and MRI findings were assessed. 6SL was well tolerated, except for self-limited gastrointestinal discomfort. Free sialic acid in both low- and high-dose groups significantly increased at 6 and 12 weeks, but not in the placebo group. In the high-dose group, proximal limb powers improved with daily 6SL. Considering the fat fraction on muscle MRI, results in the high-dose group were superior to those in the low-dose group. 6SL may be a good candidate for GNE myopathy therapeutics as it induces an increase or reduces the decrease in limb muscle power, attenuates muscle degeneration, and improves the biochemical properties of sialic acid.


Asunto(s)
Miopatías Distales , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/uso terapéutico , Proyectos Piloto , Miopatías Distales/tratamiento farmacológico , Miopatías Distales/genética , Miopatías Distales/patología , Resultado del Tratamiento , Músculo Esquelético/patología , Mutación
7.
Med Sci Monit ; 18(11): BR450-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23111736

RESUMEN

BACKGROUND: To identify meningioma-specific proteins, cerebrospinal fluid (CSF) from 4 patients with a meningioma and 4 patients with a non-brain tumorous lesion were analyzed. MATERIAL/METHODS: Two-dimensional electrophoresis and electrospray quadrupole time-of-flight tandem mass spectrometry analyses revealed 10 unique spots, containing 11 independent proteins (spot #2 and #4 each contained 2 proteins and spot #3 was not identified) were evident in CSF associated with human meningioma: serum albumin precursor (3 different isoforms), Apolipoprotein E (Apo E), Apolipoprotein J precursor (Apo J), Transthyretin precursor (TTR), Prostaglandin D2 synthase 21 kDa (PTGDS), proapolipoprotein, Chain D hemoglobin Ypsilanti, alpha-1-antitrypsin (AAT), and beta-2-microglobulin precursor (ß2M). RESULTS: The contents of Apo E, Apo J and AAT were increased, while PTGDS, TTR and ß2M were decreased. CONCLUSIONS: The results observed by 2-dimensional electrophoresis were verified by Western blot analysis. The unique proteins may represent possible candidate biomarkers of meningioma.


Asunto(s)
Biomarcadores de Tumor/líquido cefalorraquídeo , Neoplasias Meníngeas/líquido cefalorraquídeo , Neoplasias Meníngeas/diagnóstico , Meningioma/líquido cefalorraquídeo , Meningioma/diagnóstico , Proteoma/metabolismo , Proteómica/métodos , Adulto , Anciano , Secuencia de Aminoácidos , Western Blotting , Electroforesis en Gel Bidimensional , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Proteínas de Neoplasias/líquido cefalorraquídeo , Proteínas de Neoplasias/química , Proteoma/química , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
8.
Adv Mater ; 33(40): e2101558, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34431568

RESUMEN

Cell-cell interactions regulate intracellular signaling via reciprocal contacts of cell membranes in tissue regeneration and cancer growth, indicating a critical need of membrane-derived tools in studying these processes. Hence, cell-membrane-derived nanoparticles (CMNPs) are produced using tonsil-derived mesenchymal stem cells (TMSCs) from children owing to their short doubling time. As target cell types, laryngeal cancer cells are compared to bone-marrow-derived MSCs (BMSCs) because of their cartilage damaging and chondrogenic characteristics, respectively. Treating spheroids of these cell types with CMNPs exacerbates interspheroid hypoxia with robust maintenance of the cell-cell interaction signature for 7 days. Both cell types prefer a hypoxic environment, as opposed to blood vessel formation that is absent in cartilage but is required for cancer growth. Hence, angiogenesis is inhibited by displaying the Notch-1 aptamer on CMNPs. Consequently, laryngeal cancer growth is suppressed efficiently in contrast to improved chondroprotection observed in a series of cell and animal experiments using a xenograft mouse model of laryngeal cancer. Altogether, CMNPs execute a two-edged sword function of inducing hypoxic cell-cell packing, followed by suppressing angiogenesis to promote laryngeal cancer death and chondrogenesis simultaneously. This study presents a previously unexplored therapeutic strategy for anti-cancer and chondroprotective treatment using CMNPs.


Asunto(s)
Membrana Celular/química , Nanopartículas/química , Receptor Notch1/química , Animales , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Condrocitos/citología , Portadores de Fármacos/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Nanopartículas/uso terapéutico , Nanopartículas/toxicidad , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Fisiológica/efectos de los fármacos , Tonsila Palatina/citología , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Trasplante Heterólogo
9.
Nat Commun ; 11(1): 615, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001693

RESUMEN

Angiogenesis induction into damaged sites has long been an unresolved issue. Local treatment with pro-angiogenic molecules has been the most common approach. However, this approach has critical side effects including inflammatory coupling, tumorous vascular activation, and off-target circulation. Here, the concept that a structure can guide desirable biological function is applied to physically engineer three-dimensional channel networks in implant sites, without any therapeutic treatment. Microchannel networks are generated in a gelatin hydrogel to overcome the diffusion limit of nutrients and oxygen three-dimensionally. Hydrogel implantation in mouse and porcine models of hindlimb ischemia rescues severely damaged tissues by the ingrowth of neighboring host vessels with microchannel perfusion. This effect is guided by microchannel size-specific regenerative macrophage polarization with the consequent functional recovery of endothelial cells. Multiple-site implantation reveals hypoxia and neighboring vessels as major causative factors of the beneficial function. This technique may contribute to the development of therapeutics for hypoxia/inflammatory-related diseases.


Asunto(s)
Inductores de la Angiogénesis/efectos adversos , Gelatina/química , Gelatina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Isquemia/terapia , Animales , Modelos Animales de Enfermedad , Células Endoteliales/patología , Diseño de Equipo , Femenino , Miembro Posterior/irrigación sanguínea , Miembro Posterior/diagnóstico por imagen , Miembro Posterior/patología , Hidrogeles/uso terapéutico , Hipoxia , Isquemia/diagnóstico por imagen , Isquemia/patología , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Neovascularización Fisiológica/fisiología , Enfermedades Vasculares Periféricas/patología , Enfermedades Vasculares Periféricas/terapia , Prótesis e Implantes , Porcinos , Cicatrización de Heridas
10.
ACS Biomater Sci Eng ; 5(10): 4962-4969, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455243

RESUMEN

Significant fat loss is common in silicon implantation with autologous lipofilling, the most popular type of breast surgery. To overcome this, a 3D-printed fat carrier with well-defined 200 µm radial string and spoke structure was developed, followed by an electrospun nanofiber coating on the entire device surface to promote fat adhesion. This device enhanced the mechanical properties comparably to commercial acellular dermal matrix for in vitro adipogenic differentiation of adipose-derived stem cells, implantation compatibility without foreign body responses, and maintenance of healthy lipid droplet structures. These results show the promising potential of this device to facilitate surface-guided lipogenesis in composite breast reconstruction surgery.

11.
Artículo en Inglés | MEDLINE | ID: mdl-31781271

RESUMEN

Cudraxanthone D (CD), derived from the root bark of Cudrania tricuspidata, is a natural xanthone compound. However, the biological activity of CD in terms of human metabolism has been barely reported to date. Autophagy is known as a self-degradation process related to cancer cell viability and metastasis. Herein, we investigated the effects of CD on human oral squamous cell carcinoma (OSCC) metastatic related cell phenotype. We confirmed that CD effectively decreased proliferation and viability in a time- and dose-dependent manner in human OSCC cells. In addition, OSCC cell migration, invasion, and EMT were inhibited by CD. To further determine the underlying mechanism of CD's inhibition of cell metastatic potential, we established the relationship between EMT and autophagy in OSCC cells. Thus, our findings indicated that CD inhibited the potential metastatic abilities of OSCC cells by attenuating autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA