Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Environ Res ; 239(Pt 2): 117409, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838191

RESUMEN

The lack of crystallinity of the aerogel materials has limited their significance which otherwise have found huge potential in wide variety of applications. In current work, we have developed TiO2 aerogels by solid-state gelation method using commercially available P25 and ST-01 (commercial Ishihara TiO2 Powder). The lack of crystallinity in the aerogel framework was resolved via utilizing crystalline TiO2 nanoparticles and the phase transformation was assessed as a function of phase composition. Via controlled solid-state gelation, surface area retention of 88.7% was achieved whereas the rutile-to-anatase weight fraction (WR) was considerably enhanced to 0.50. Interestingly, the phase transformation occurred only in P25, which suggests the mixed phase (anatase + rutile) composition as prerequisite for successful phase transformation. Favorably, TiO2 aerogels imbibe high degree of oxygen vacancies (Vo) responsible for photocatalytic applications. Interestingly, Vo induction is higher for the TiO2 with anatase phase composition (ST-01) followed by the sample with mixed phase composition (P25). The developed TiO2 aerogel photocatalysts were employed to dye degradation of Rhodamine B (RhB) and Methylene Blue (MB). The samples attained 94.8% and 96.8% degradation efficiency within 15 min for RhB and MB with nearly 2-fold improvement in the photocatalytic efficiency compared to parent P25 TiO2 respectively.


Asunto(s)
Nanopartículas , Titanio , Catálisis , Titanio/química , Nanopartículas/química , Azul de Metileno/química
2.
Langmuir ; 37(17): 5260-5274, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886316

RESUMEN

In the present study, cobalt manganese phosphate (H-CMP-series) thin films with different compositions of Co/Mn are prepared on stainless steel (SS) substrate via a facile hydrothermal method and employed as binder-free cathode electrodes in a hybrid supercapacitor. The XRD study reveals a monoclinic crystal structure, and the FE-SEM analysis confirmed that H-CMP-series samples displayed a nano/microarchitecture (microflowers to nanoflakes) on the surface of SS substrate with excess available surfaces and unique sizes. Interestingly, the synergy between cobalt and manganese species in the cobalt manganese phosphate thin film electrode demonstrates a maximum specific capacitance of 571 F g-1 at a 2.2 A g-1 current density in 1 M KOH. Besides, the nano/microstructured cobalt manganese phosphate was able to maintain capacitance retention of 88% over 8000 charge-discharge cycles. More importantly, the aqueous/all-solid-state asymmetric supercapacitor manufactured with the cobalt manganese phosphate thin film as the cathode and reduced graphene oxide (rGO) as the anode displays a high operating potential window of 1.6 V. The aqueous asymmetric device exhibited a maximum specific capacitance of 128 F g-1 at a current density of 1 A g-1 with an energy density of 45.7 Wh kg-1 and a power density of 1.65 kW kg-1. In addition, the all-solid-state asymmetric supercapacitor device provides a high specific capacitance of 37 F g-1 at 1 A g-1 with 13.3 Wh kg-1 energy density and 1.64 kW kg-1 power density in a polymer gel (PVA-KOH) electrolyte. The long cyclic life of both devices (87 and 84%, respectively, after 6000 cycles) and practical demonstration of the solid-state device (lighting of a LED lamp) suggest another alternative choice for cathode materials to develop stable energy storage devices with high energy density. Furthermore, the aforementioned study paves the way to investigate phosphate-based materials as a new class of materials for supercapacitor applicability.

3.
J Nanosci Nanotechnol ; 19(3): 1217-1227, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469167

RESUMEN

Metal oxide aerogels such as zirconia (ZrO2), titania (TiO2), and alumina (Al2O3) aerogels are very interesting nanoporous materials applicable as thermal insulators, catalysts, sensors, and so on. To obtain the aerogels, the first key step is a sol-gel process to prepare the gel followed by either supercritical drying, ambient pressure drying, or freeze-drying. Although the expensive and energy-intensive supercritical drying method restricts the commercialization of the aerogels, ambient pressure drying has shown great potential as an alternative and very simple method for aerogel synthesis. The sol-gel method and preparation parameters such as hydrolysis water, the silylating agent concentration, and the thermal treatment temperature have a profound impact on the textural and structural properties of the aerogels. Therefore, in this review, we study the synthesis and the influence of these parameters on the properties of metal oxide aerogels via ambient pressure drying.

4.
J Nanosci Nanotechnol ; 19(3): 1376-1381, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469191

RESUMEN

Silica aerogels possess low thermal conductivity but have a brittle nature, while their polymers tend to exhibit enhanced mechanical properties. In this study, we introduce a new approach to overcoming this brittle property of silica aerogels. Polypropylene/silica aerogel composites were prepared by thermally induced phase separation followed by a supercritical CO2 drying method. Silica aerogel was formed onto a polypropylene scaffold using a two-step sol-gel process with methyltrimethoxysilane as the silica precursor. Enhancement of the mechanical properties of the polypropylene/silica aerogel composite compared with a pristine methyltrimethoxysilane-based silica aerogel was observed. The effects of the latter on the microstructure and physical properties of the polypropylene/silica aerogel (hereafter referred to as the polymer matrix aerogel) composite were investigated. Compared with the polypropylene monolith, the polymer matrix aerogel composite demonstrated enhanced surface-chemical and microporous-structural properties such as higher hydrophobicity (135°), pore volume (0.18 cm³/g), average pore diameter (12.55 nm), and specific surface area (57.2 m²/g). This novel approach of incorporating methyltrimethoxysilane-based silica aerogel onto polypropylene when synthesizing the polymer matrix aerogel composite shows great potential as a durable superhydrophobic and corrosion resistant thermal insulating material.

5.
Sensors (Basel) ; 19(12)2019 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-31234514

RESUMEN

Turbomachine components used in aerospace and power plant applications preferably require continuous structural health monitoring at various temperatures. The structural health of pristine and damaged superalloy compressor blades of a gas turbine engine was monitored using real electro-mechanical impedance of deposited thick film piezoelectric transducers at 20 and 200 °C. IVIUM impedance analyzer was implemented in laboratory conditions for damage detection in superalloy blades, while a custom-architected frequency-domain transceiver circuit was used for semi-field circumstances. Recorded electromechanical impedance signals at 20 and 200 °C acquired from two piezoelectric wafer active sensors bonded to an aluminum plate, near and far from the damage, were initially utilized for accuracy and reliability verification of the transceiver at temperatures >20 °C. Damage formation in both the aluminum plate and blades showed a peak shift in the swept frequency along with an increase in the amplitude and number of impedance peaks. The thermal energy at 200 °C, on the other hand, enforces a further subsequent peak shift in the impedance signal to pristine and damaged parts such that the anti-resonance frequency keeps reducing as the temperature increases. The results obtained from the impedance signals of both piezoelectric wafers and piezo-films, revealed that increasing the temperature somewhat decreased the real impedance amplitude and the number of anti-resonance peaks, which is due to an increase in permittivity and capacitance of piezo-sensors. A trend is also presented for artificial intelligence training purposes to distinguish the effect of the temperature versus damage formation in sample turbine compressor blades. Implementation of such a monitoring system provides a distinct advantage to enhance the safety and functionality of critical aerospace components working at high temperatures subjected to crack, wear, hot-corrosion and erosion.

6.
Sensors (Basel) ; 19(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577507

RESUMEN

The composition of fine-ground lead zirconate-titanate powder Pb(Zr0.52Ti0.48)O3, suspended in PZT and bismuth titanate (BiT) solutions, is deposited on the curved surface of IN718 and IN738 nickel-based supper alloy substrates up to 100 µm thickness. Photochemical metal organic and infiltration techniques are implemented to produce smooth, semi-dense, and crack-free random orientated thick piezoelectric films as piezo-sensors, free of any dopants or thickening polymers. Every single layer of the deposited films is heated at 200 °C with 10 wt.% excess PbO, irradiated by ultraviolet lamp (365 nm, 6 watt) for 10 min, pyrolyzed at 400 °C, and subsequently annealed at 700 °C for one hour. This process is repeated successively until reaching the desired thickness. Au and Pt thin films are deposited as the bottom and top electrodes using evaporation and sputtering methods, respectively. PZT/PZT and PZT/BiT composite films are then characterized and compared to similar PZT and BiT thick films deposited on the similar substrates. The effect of the composition and deposition process is also investigated on the crystalline phase development and microstructure morphology as well as the dielectric, ferroelectric, and piezoelectric properties of piezo-films. The maximum remnant polarization of Pr = 22.37 ± 0.01, 30.01 ± 0.01 µC/cm², the permittivity of εr = 298 ± 3, 566 ± 5, and piezoelectric charge coefficient of d33 = 126, 148 m/V were measured versus the minimum coercive field of Ec = 50, 20 kV/cm for the PZT/PZT and PZT/BiT thick films, respectively. The thick film piezo-sensors are developed to be potentially used at frequency bandwidth of 1⁻5 MHz for rotary structural health monitoring and also in other industrial or medical applications as a transceiver.

7.
Nanotechnology ; 27(21): 215704, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27087674

RESUMEN

Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV-Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ.

8.
Nanotechnology ; 26(27): 275704, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26086277

RESUMEN

Resistive random access memory and the corresponding cross-point array (CPA) structure have received a great deal of attention for high-density next generation non-volatile memory. However, the cross-talk issue of CPA structure by sneak current should be overcome to realize the highest density integration. To accomplish this, the sneak current can be minimized by high, nonlinear characteristic behaviors of resistive switching (RS). Therefore this study fabricated pnp bipolar hetero-junction structure using the perovskite manganite family, such as La0.7Sr(0.3-x)CaxMnO3 (LSCMO) and CaMnO(3-δ) (CMO), to obtain nonlinear RS behavior. The pnp structure not only shows nonlinear characteristics, but also a tunable characteristic with Ca substitution.

9.
Nano Lett ; 14(9): 5104-9, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25136740

RESUMEN

ZnO, a wide bandgap semiconductor, has attracted much attention due to its multifunctionality, such as transparent conducting oxide, light-emitting diode, photocatalyst, and so on. To improve its performances in the versatile applications, numerous hybrid strategies of ZnO with graphene have been attempted, and various synergistic effects have been achieved in the ZnO-graphene hybrid nanostructures. Here we report extraordinary charge transport behavior in Al-doped ZnO (AZO)-reduced graphene oxide (RGO) nanocomposites. Although the most challenging issue in semiconductor nanocomposites is their low mobilities, the AZO-RGO nanocomposites exhibit single crystal-like Hall mobility despite the large quantity of nanograin boundaries, which hinder the electron transport by the scattering with trapped charges. Because of the significantly weakened grain boundary barrier and the proper band alignment between the AZO and RGO, freely conducting electrons across the nanograin boundaries can be realized in the nanocomposites. This discovery of the structurally nanocrystalline-electrically single crystalline composite demonstrates a new route for enhancing the electrical properties in nanocomposites based on the hybrid strategy.

10.
Opt Express ; 22 Suppl 3: A723-34, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24922380

RESUMEN

A new approach to surface roughening was established and optimized in this paper for enhancing the light extraction of high power AlGaInP-based LEDs, by combining ultraviolet (UV) assisted imprinting with dry etching techniques. In this approach, hexagonal arrays of cone-shaped etch pits are fabricated on the surface of LEDs, forming gradient effective-refractive-index that can mitigate the emission loss due to total internal reflection and therefore increase the light extraction efficiency. For comparison, wafer-scale FLAT-LEDs without any surface roughening, WET-LEDs with surface roughened by wet etching, and DRY-LEDs with surface roughened by varying the dry etching time of the AlGaInP layer, were fabricated and characterized. The average output power for wafer-scale FLAT-LEDs, WET-LEDs, and DRY3-LEDs (optimal) at 350 mA was found to be 102, 140, and 172 mW, respectively, and there was no noticeable electrical degradation with the WET-LEDs and DRY-LEDs. The light output was increased by 37.3% with wet etching, and 68.6% with dry etching surface roughening, respectively, without compromising the electrical performance of LEDs. A total number of 1600 LED chips were tested for each type of LEDs. The yield of chips with an optical output power of 120 mW and above was 0.3% (4 chips), 42.8% (684 chips), and 90.1% (1441 chips) for FLAT-LEDs, WET-LEDs, and DRY3-LEDs, respectively. The dry etching surface roughening approach developed here is potentially useful for the industrial mass production of wafer-scale high power LEDs.

11.
Phys Chem Chem Phys ; 16(8): 3529-33, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24441763

RESUMEN

Utilizing internal energy artificially implemented by cold-pressing in the specimens, we demonstrate a way to synthesize high-quality bulk thermoelectric materials at otherwise too low a temperature to approach to an equilibrium state. This low-temperature synthesis technique will provide a new opportunity to integrate high-performance thermoelectric materials into various electronic devices for a built-in energy source, as well as to develop low-cost fabrication methods.

12.
Gels ; 10(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920927

RESUMEN

Due to their high surface area and low weight, silica aerogels are ideally suited for several uses, including drug delivery, catalysis, and insulation. Oil-water-oil (OWO) double emulsion is a simple and regulated technique for encasing a volatile oil phase in a silica shell to produce hollow silica (SiO2) aerogel particles by using hydrophilic and hydrophobic emulsifiers. In this study, the oil-water-oil (OWO) double emulsion method was implemented to synthesize surface-modified hollow silica (SiO2) aerogel particles in a facile and effective way. This investigation mainly focused on the influence of the N-hexane-to-water glass (OW) ratio (r) in the first emulsion, silica (water glass) content concentration (x), and surfactant concentration (s) variations. Furthermore, surface modification techniques were utilized to customize the aerogel's characteristics. The X-ray diffraction (XRD) patterns showed no imprints of impurities except SiO2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images highlight the hollow microstructure of silica particles. Zeta potential was used to determine particle size analysis of hollow silica aerogel particles. The oil-water-oil (OWO) double emulsion approach was successfully employed to synthesize surface-modified hollow silica (SiO2) aerogel particles, providing precise control over the particle characteristics. By the influence of the optimization condition, this approach improves the aerogel's potential applications in drug delivery, catalysis, and insulation by enabling surface modifications.

13.
Mater Horiz ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38894689

RESUMEN

A facile reduction and doping process is employed with the supercritical ethanol drying method to form RuNi alloy aerogels. The optimized heterostructure comprising RuNi metal, RuO2, and NiO phases is synthesized through partial oxidation. When applied to the surface of Ni foam, the multiphase aerogels form a morphology of highly porous 0D colloidal aerogel networks on the surface. RuNi alloy-Ni foam oxidized at 350 °C (RuNi-350@NF) has an overpotential of 89 and 61 mV in 1 M KOH and 0.5 M H2SO4 media at 50 mA cm-2, as well as satisfactory long-term stability. Additionally, the Tafel slopes in alkaline and acidic media are found to be 34 and 30.9 mV dec-1, respectively. Furthermore, it exhibits long-term stability (35 h) in alkaline and acidic media at high current densities of 50 mA cm-2, respectively. This study presents a novel strategy for developing exceptionally efficient and free-standing 3D porous aerogel electrocatalysts with potential applications in hydrogen production.

14.
J Colloid Interface Sci ; 666: 424-433, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608637

RESUMEN

High-nickel cobalt-free layered cathode is regarded as a highly potential cathode material for the next generation lithium ion batteries (LIBs) because of its high energy density, low cost and environmentally benign. However, the poor cycle performance caused by its intrinsic unstable structure and chemo-mechanical instability frustrates its practical applications. Herein, we have developed a new core-shell high-nickel cobalt-free layered LiNi0.95Mg0.02Al0.03O2@Li2ZrO3 (LZO-NMA9523) cathode for high-performance LIBs. The Li2ZrO3 coating layer firstly helps to suppress and reduce the degree of Li+/Ni2+ cation mixing during the material preparation process. In addition, the Li2ZrO3 coating layer can not only accommodate the volume variations and enhance the electricity of the active materials, but also effectively inhibit the harmful irreversible phase transition during the charging/discharging process, thus greatly stabilizing the structure of the high-nickel cobalt-free cathode. As an advanced cathode for LIBs, the LZO-NMA9523 exhibits an excellent reversible capacity of 146.9 mAh g-1 after 100 cycles at 0.5 C with capacity retention of about 80%. This study provides a possible high-nickel cobalt-free layered cathode material for the next generation LIBs.

15.
J Colloid Interface Sci ; 666: 101-117, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588623

RESUMEN

Electrode materials must be rationally designed with morphologies and electroactive sites manipulated through cations' synergy in bimetal compounds in order to maximize the performance of energy storage devices. Therefore, the present study emphasizes binder-free scalable preparation of cobalt nickel vanadate (CNV) thin films by a facile successive ionic layer adsorption and reaction (SILAR) approach with specific cations (Co:Ni) alternation. Increasing the Ni cation content in the CNV notably transforms its microflower structure comprising nanoflakes (252 nm) into nanoparticles (74 nm). An optimized S-CNV5 thin film cathode with Co:Ni molar ratio of âˆ¼ 0.4:0.6 and a high specific surface area of 340 m2 g-1, provided the excellent specific capacitance (Csp) and capacity (Csc) of 1382 F g-1 and 691 C g-1, respectively at 1 A g-1 current density. A hybrid aqueous supercapacitor (HASc) device with positive and negative electrodes comprising optimized CNV and reduced graphene oxide (rGO), respectively, in a 1 M KOH electrolyte delivered a Csp of 133 F g-1 and a specific energy (SE) of 53 Wh kg-1 at a specific power (SP) of 2261 kW kg-1. Additionally, a fabricated hybrid solid-state supercapacitor (HSSc) device with the same electrodes applying PVA-KOH gel electrolyte displayed a Csp of 119 F g-1, and SE of 46 Wh kg-1 at SP of 1184 W kg-1. This boosted electrochemical activity is due to the synergetic effects of Ni and Co species in the CNV thin film electrodes, emphasizing the potential of CNV electrodes as cathodes in hybrid energy storage devices.

16.
J Nanosci Nanotechnol ; 13(9): 6042-51, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24205596

RESUMEN

Cu(In,Ga)Se2 (CIGS) is a compound semiconductor and is one of the most attractive light-absorbing materials for use in thin film solar cells. Among the various approaches to prepare CIGS thin films, the powder process offers an extremely simple and materials-efficient method. Here, we report the mechano-chemical preparation of CIGS compound powders suitable for fabrication of CIGS films by a powder process. We found that the CIGS phase was formed from the elemental powders of Cu, In, and Se and liquid Ga using high energy milling process with a milling time as short as 40 min at 200 rpm due to a self-accelerating exothermic reaction. The morphology and size of the CIGS powders changed with a function of the milling speed (100-300 rpm), leading to an optimal condition of milling at 200 rpm for 120 min. We also found that it was difficult to obtain a monolithic phase of the CIGS powders without severe particle aggregation by mechano-chemical milling alone. Therefore, in combination with the milling, subsequent heat-treatment at 300 degrees C was performed, which successfully provided monolithic CIGS nanopowders suitable for powder process. When a thin film was fabricated from the monolithic CIGS nanopowders, a highly dense film with large crystalline grains was obtained. The CIGS film preserved its chemical composition of CuIn0.7Ga0.3Se2 after sintering as evidenced by Raman spectroscopy, EDS and SAED pattern of transmission electron microscopy. The film was also found suitable for a light absorbing layer of CIGS solar cells with its band gap energy of 1.14 eV evaluated by transmittance spectroscopy.

17.
Microsc Microanal ; 19 Suppl 5: 131-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920191

RESUMEN

The effects of polymer substrates on the interfacial structure and the thermal stability of Ga-doped ZnO (GZO) thin films were investigated. The GZO thin films were deposited on polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) substrates by rf-magnetron sputtering at room temperature, and thermal stability tests of the GZO thin films on the polymer substrates were performed at 150°C up to 8 h in air. Electrical and structural characterizations of the GZO thin films on the PET and the PEN substrates were carried out, and the origins of the stable interfacial structure and the improved thermal stability of the GZO thin film on the PEN substrate were discussed.

18.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177045

RESUMEN

Aerogels are highly porous materials with fascinating properties prepared using sol-gel chemistry. Due to their unique physical and chemical properties, aerogels are recognized as potential candidates for diverse applications, including thermal insulation, sensor, environmental remediation, etc. Despite these applications, aerogels are not routinely found in our daily life because they are fragile and have highly limited scale-up productions. It remains extremely challenging to improve the mechanical properties of aerogels without adversely affecting their other properties. To boost the practical applications, it is necessary to develop efficient, low-cost methods to produce aerogels in a sustainable way. This comprehensive review surveys the progress in the development of aerogels and their classification based on the chemical composition of the network. Recent achievements in organic, inorganic, and hybrid materials and their outstanding physical properties are discussed. The major focus of this review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. We begin with a brief discussion of the fundamental issues in silica aerogels and then proceed to provide an overview of the synthesis of organic and hybrid aerogels from various precursors. Organic aerogels show promising results with excellent mechanical strength, but there are still several issues that need further exploration. Finally, growing points and perspectives of the aerogel field are summarized.

19.
ACS Appl Mater Interfaces ; 15(41): 48485-48494, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37792023

RESUMEN

Biomass-derived value-added materials such as levulinic acid (LA) are favorable natural resources for producing ester-based biolubricants owing to their biodegradability, nontoxicity, and excellent metal-adhering properties. However, highly active catalysts must be developed to carry out efficient esterification of LA with aliphatic alcohols, especially long-chain aliphatic alcohols. In this study, we developed a novel porous covalent organic polymer catalyst (BPOP-SO3H) with dual acid sites, phosphate and sulfonic acid sites, for the esterification of LA. The prepared BPOP-SO3H catalyst was verified using various surface analysis techniques. BPOP-SO3H exhibited 98% LA conversion with n-butanol and 99% selectivity for butyl levulinate ester within 30 min, which is superior to that of most reported catalysts. BPOP-SO3H also showed high LA conversion and ester selectivity when other aliphatic alcohols were used. Moreover, BPOP-SO3H showed good recyclability for five consecutive cycles. We believe that incorporating a high density of acid sites into a porous polymer with a large surface area and hierarchical pores is a promising approach for developing heterogeneous acid catalysts for the production of alkyl levulinate esters from LA.

20.
Chemosphere ; 338: 139503, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453522

RESUMEN

Sulfur dioxide (SO2) gas at trace levels challenges the consumption of fuel gases and cleaning of flue gases originating from diverse anthropogenic sources. We have demonstrated Zn-Al layered double hydroxide (LDH) and layered double oxide (LDO) as low-cost and effective adsorbents in removing lowly concentrated SO2 gas at room temperature. Water in the adsorbent bed significantly improved the performance, where the maximum adsorption capacity of 38.0 mg g-1 was achieved for LDO. Based on the spectroscopic findings, the adsorbed gas molecules were oxidized to surface-bound sulfate/bisulfate species, showing complete mineralization of SO2 molecules. By employing an inexpensive NaOH-H2O2 solution-based regeneration strategy, we successfully regenerated the spent LDO, significantly restoring its gas uptake capacity. The regenerated oxide exhibited an increased gas uptake capacity ranging from 38.0 to 98.5 mg g-1, highlighting the practicality and economic feasibility of our approach. LDH/LDO materials are promising regenerable adsorbents for removing low concentrations of SO2 gas in ambient conditions.


Asunto(s)
Aluminio , Dióxido de Azufre , Dióxido de Azufre/química , Aluminio/química , Óxidos , Hidróxido de Aluminio , Zinc , Temperatura , Peróxido de Hidrógeno , Hidróxidos , Ácidos , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA