Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Mater ; 22(9): 1128-1135, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37500959

RESUMEN

The niobium oxide polymorph T-Nb2O5 has been extensively investigated in its bulk form especially for applications in fast-charging batteries and electrochemical (pseudo)capacitors. Its crystal structure, which has two-dimensional (2D) layers with very low steric hindrance, allows for fast Li-ion migration. However, since its discovery in 1941, the growth of single-crystalline thin films and its electronic applications have not yet been realized, probably due to its large orthorhombic unit cell along with the existence of many polymorphs. Here we demonstrate the epitaxial growth of single-crystalline T-Nb2O5 thin films, critically with the ionic transport channels oriented perpendicular to the film's surface. These vertical 2D channels enable fast Li-ion migration, which we show gives rise to a colossal insulator-metal transition, where the resistivity drops by 11 orders of magnitude due to the population of the initially empty Nb 4d0 states by electrons. Moreover, we reveal multiple unexplored phase transitions with distinct crystal and electronic structures over a wide range of Li-ion concentrations by comprehensive in situ experiments and theoretical calculations, which allow for the reversible and repeatable manipulation of these phases and their distinct electronic properties. This work paves the way for the exploration of novel thin films with ionic channels and their potential applications.

2.
Nano Lett ; 22(8): 3252-3259, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35434994

RESUMEN

The nucleation and crystallization of Bi particles on two matrices, crystalline bismuth sulfide (c-Bi2S3) and amorphized bismuth titanium oxide (a-Bi12TiO20), were studied by using in situ transmission electron microscopy (TEM) analysis. The atomic structures of the Bi particles were monitored by acquiring high-resolution TEM images in real time. The Bi particles were grown on c-Bi2S3 and a-Bi12TiO20 via a two-step nucleation mechanism; dense liquid clusters were clearly observed at the initial stage of nucleation, and the coalescence of clusters was frequently observed during the growth. However, the nucleation and crystallization behaviors of Bi particles were governed by the matrix; in particular, the evolution of their morphology and atomic structure was confined on c-Bi2S3 but free from matrix effects on a-Bi12TiO20. The matrix effect on the two-step nucleation mechanism was demonstrated from a thermodynamic point of view.

3.
Phys Chem Chem Phys ; 20(25): 16932-16938, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29682636

RESUMEN

The tunable polaron effect of amorphous tungsten oxide on FTO substrates has been used to detect fluorine in the gas phase via photochemical and gasochromic reactions. By combining photochemical (UV exposure under an H2 atomsphere) and gasochromic (XeF2 exposure) reactions, the detection of gaseous fluorine using amorphous tungsten oxide is described. The effective hydrogenation of WO3 was achieved using UV/H2 exposure to prepare hydrogenated tungsten oxide (H-WO3-x) upon activating the strong polaron-coupling to infrared (IR) light to decrease IR transmission from 70 to 20% at 1000 nm wavelength. This is explained by creation of W 5d unpaired electrons excited by band-edge defect states or W5+ states. The H-WO3-x lattice structure was maintained as an amorphous structure and found to have hydrogen-associated shallow- and oxygen vacancy-associated deep-trap levels with a moderate enhancement of the n-type characteristic. The gasochromic reaction takes place within tens of seconds at room temperature upon exposure to XeF2 gas leading to atomic F insertion. Fluorine, which is one of the most electronegative materials, is combined with the W5+ and W6+ in H-WO3-x to remove H to form volatile HF vapor and the formation of W-F bonds. The global incorporation of fluorine effectively turns H-WO3-x into F-WO3-x structures and deactivates the polaron-IR coupling (IR transmission change from 20 to 70%) since all the band-edge defect states are passivated upon F insertion with a strong n-doping effect. Therefore, this approach, entirely processed at room temperature, is highly applicable to fluorine detecting sensors and devices utilizing the polaron-IR coupling effect.

4.
Nano Lett ; 16(9): 5928-33, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27552187

RESUMEN

The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications.

5.
Nano Lett ; 16(3): 1890-5, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26839956

RESUMEN

Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

6.
Microsc Microanal ; 19 Suppl 5: 109-13, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920186

RESUMEN

The interfacial layer between the Al2O3 layer and the Si3N4 layer formed after postdeposition annealing (PDA) of TaN/Al2O3/Si3N4/SiO2/Si (TANOS) stacks was investigated using transmission electron microscopy (TEM), scanning transmission electron microscopy, and electron energy loss spectroscopy (EELS). From the result of the TEM analysis, it was found that the 2-nm-thick interface layer between Al2O3 and Si3N4 layers was amorphous. The high-loss EELS analysis showed that the phases of the interfacial layer weakly bound together instead of the substoichiometric silicon oxide and amorphous Al2O3 near the bottom interface of the crystalline Al2O3. The low-loss EELS analysis showed that aluminum existed in metallic state at the interface. Therefore, we speculated that SiO(x)N(y) could be formed by oxidation of Si3N4 during PDA and that metallic aluminum could be formed by the decomposition of weakly bound amorphous Al2O3 during electron irradiation. These complicated reactions near the interface could induce oxygen deficiency in the Al2O3 layer and finally degrade the retention properties of TANOS stacks.

7.
J Electron Microsc (Tokyo) ; 60(2): 143-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21393371

RESUMEN

In this study, microstructures of Cu powders coated with octanethiol were analyzed using (scanning) transmission electron microscopy. Moreover, aging process of the octanethiol-coated layer as time passes by was analyzed using the electron energy loss spectroscopy technique. The octanethiol layer coated on the surface of Cu powders was kept until it was exposed to air for around 30 days. As days passes by, the coating layer had been decomposed and then a Cu(2)O layer was formed on the surface of powders.

8.
Micron ; 143: 103024, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33549851

RESUMEN

The organelle-like structures of Xanthomonas citri, a bacterial pathogen that causes citrus canker, were investigated using an analytical transmission electron microscope. After high-pressure freezing, the bacteria were then freeze-substituted for imaging and element analysis. Miniscule electron-dense structures of varying shapes without a membrane enclosure were frequently observed near the cell poles in a 3-day culture. The bacteria formed cytoplasmic electron-dense spherical structures measuring approximately 50 nm in diameter. Furthermore, X. citri produced electron-dense or translucent ellipsoidal intracellular or extracellular granules. Single- or double-membrane-bound vesicles, including outer-inner membrane vesicles, were observed both inside and outside the cells. Most cells had been lysed in the 3-week X. citri culture, but they harbored one or two electron-dense spherical structures. Contrast-inverted scanning transmission electron microscopy images revealed distinct white spherical structures within the cytoplasm of X. citri. Likewise, energy-dispersive X-ray spectrometry showed the spatial heterogeneity and co-localization of phosphorus, oxygen, calcium, and iron only in the cytoplasmic electron-dense spherical structures, thus corroborating the nature of polyphosphate granules.


Asunto(s)
Gránulos Citoplasmáticos/ultraestructura , Vacuolas/ultraestructura , Xanthomonas/química , Xanthomonas/ultraestructura , Calcio/química , Citrus/microbiología , Gránulos Citoplasmáticos/química , Hierro/química , Microscopía Electrónica de Transmisión , Fósforo/química , Enfermedades de las Plantas/microbiología
9.
ACS Nano ; 14(9): 12184-12194, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32852936

RESUMEN

Two-dimensional Re dichalcogenide nanostructures are promising electrocatalysts for the hydrogen evolution reaction (HER). Herein, we report the adatom doping of various transition metals (TM = Mn, Fe, Co, Ni, and Cu) in ReSe2 nanosheets synthesized using a solvothermal reaction. As the atomic number of TM increases from Mn to Cu, the adatoms on Re sites become more favored over the substitution. In the case of Ni, the fraction of adatoms reaches 90%. Ni doping resulted in the most effective enhancement in the HER catalytic performance, which was characterized by overpotentials of 82 and 109 mV at 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH, respectively, and the Tafel slopes of 54 and 81 mV dec-1. First-principles calculations predicted that the adatom doping structures (TMs on Re sites) have higher catalytic activity compared with the substitution ones. The adsorbed H atoms formed a midgap hybridized state via direct bonding with the orbitals of TM adatom. The present work provides a deeper understanding into how TM doping can provide the catalytically active sites in these ReSe2 nanosheets.

10.
Nanoscale ; 12(3): 1749-1758, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31895376

RESUMEN

Artificially designing the crystal orientation and facets of noble metal nanoparticles is important to realize unique chemical and physical features that are very different from those of noble metals in bulk geometries. However, relative to their counterparts synthesized in wet-chemical processes, vapor-depositing noble metal nanoparticles with the desired crystallographic features while avoiding any notable impurities is quite challenging because this task requires breaking away from the thermodynamically favorable geometry of nanoparticles. We used plasma-generated N atoms as a surface-active agent, a so-called surfactant, to control the structural development of Ag nanoparticles supported on a chemically heterogeneous ZnO substrate. The N-surfactant-facilitated sputter deposition provided strong selectivity for crystalline orientation and facets, leading to a highly flattened nanoparticle shape that clearly deviated from the energetically favorable spherical polyhedra, due to the drastic decreases in the surface free energies of Ag nanoparticles in the presence of the N surfactant. The Ag nanoparticles successively developed a nearly unidirectional (111) orientation aligned by stimulating the crystalline coupling of Ag along the orientation of the ZnO substrate. The experimental and simulation results not only offer new insights into the advantages of N as a surfactant for the orientation and shape-controlled synthesis of Ag nanoparticles via sputter deposition but also provide the first solid evidence validating that immiscible, nonresidual gaseous surfactants can be used in the vapor deposition processes of noble metal nanoparticles to manipulate their surface free energies.

11.
Micron ; 40(3): 365-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19036595

RESUMEN

The complex dielectric functions and refractive index of atomic layer deposited HfO(2) were determined by the line scan method of the valence electron energy loss spectrum (VEELS) in a scanning transmission electron microscope (STEM). The complex dielectric functions and dielectric constant of monoclinic HfO(2) were calculated by the density functional theory (DFT) method. The resulting two dielectric functions were relatively well matched. On the other hand, the refractive index of HfO(2) was measured as 2.18 by VEELS analysis and 2.1 by DFT calculation. The electronic structure of HfO(2) was revealed by the comparison of the inter-band transition strength, obtained by STEM-VEELS, with the density of states (DOS) calculated by DFT calculation.


Asunto(s)
Hafnio/química , Óxidos/química , Silicio/química , Algoritmos , Microscopía Electrónica de Rastreo/métodos , Estructura Molecular , Refractometría , Semiconductores , Espectroscopía de Pérdida de Energía de Electrones/métodos
12.
J Nanosci Nanotechnol ; 9(7): 4240-3, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19916437

RESUMEN

Top-gate ZnO nanowire field-effect transistors (FETs) with Al2O3 gate dielectric layers as storage nodes were fabricated and their memory effects were characterized in this work. The Al2O3 layers deposited on the ZnO nanowire channels were utilized not only as gate dielectric ones but also as charge trapping ones. For a representative top-gate ZnO nanowire FET, its I(DS)-V(GS) characteristics for the double sweep of the gate voltages exhibit the counterclockwise hysteresis and the threshold voltage shift. The gate voltage in the pulse form was applied for 1 s, and the threshold voltage shift of I(DS)-V(GS) characteristics was extended from 0.3 to 0.8 V compared with that for the double sweep. In this ZnO nanowire FET, negative charge carriers originated from the gate electrode are stored in the Al2O3 layer for applied negative gate voltages, and they are extracted for applied positive gate voltages.

13.
Appl Microsc ; 50(1): 2, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33580343

RESUMEN

Electron energy loss spectroscopy (EELS) is an analytical technique that can provide the structural, physical and chemical information of materials. The EELS spectra can be obtained by combining with TEM at sub-nanometer spatial resolution. However, EELS spectral information can't be obtained easily because in order to interpret EELS spectra, we need to refer to and/or compare many reference data with each other. And in addition to that, we should consider the different experimental variables used to produce each data. Therefore, reliable and easily interpretable EELS standard reference data are needed.Our Electron Energy Loss Data Center (EELDC) has been designated as National Standard Electron Energy Loss Data Center No. 34 to develop EELS standard reference (SR) data and to play a role in dissemination and diffusion of the SR data to users. EELDC has developed and collected EEL SR data for the materials required by major industries and has a total of 82 EEL SR data. Also, we have created an online platform that provides a one-stop-place to help users interpret quickly EELS spectra and get various spectral information. In this paper, we introduce EEL SR data, the homepage of EELDC and how to use them.

14.
Nat Commun ; 10(1): 1471, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931928

RESUMEN

Nanoparticles formed on oxide surfaces are of key importance in many fields such as catalysis and renewable energy. Here, we control B-site exsolution via lattice strain to achieve a high degree of exsolution of nanoparticles in perovskite thin films: more than 1100 particles µm-2 with a particle size as small as ~5 nm can be achieved via strain control. Compressive-strained films show a larger number of exsolved particles as compared with tensile-strained films. Moreover, the strain-enhanced in situ growth of nanoparticles offers high thermal stability and coking resistance, a low reduction temperature (550 °C), rapid release of particles, and wide tunability. The mechanism of lattice strain-enhanced exsolution is illuminated by thermodynamic and kinetic aspects, emphasizing the unique role of the misfit-strain relaxation energy. This study provides critical insights not only into the design of new forms of nanostructures but also to applications ranging from catalysis, energy conversion/storage, nano-composites, nano-magnetism, to nano-optics.

15.
Nat Commun ; 10(1): 2083, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048684

RESUMEN

The original version of this Article contained an error in the Data Availability section, which incorrectly read 'The data that support the findings of this study are available from the corresponding authors upon request.' The correct version replaces this sentence with 'The research data underpinning this publication can be accessed at https://doi.org/10.17630/21d12144-58ef-4f82-acd0-ba3c9a44ed72'. This has been corrected in both the PDF and HTML versions of the Article.

16.
Adv Mater ; 31(8): e1805438, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30614565

RESUMEN

The origins of the high device performance and degradation in the air are the greatest issues for commercialization of perovskite solar cells. Here this study investigates the possible origins of the mixed perovskite cells by monitoring defect states and compositional changes of the perovskite layer over the time. The results of deep-level transient spectroscopy analysis reveal that a newly identified defect formed by Br atoms exists at deep levels of the mixed perovskite film, and its defect state shifts when the film is aged in the air. The change of the defect state is originated from loss of the methylammonium molecules of the perovskite layer, which results in decreased JSC , deterioration of the power conversion efficiency and long-term stability of perovskite solar cells. The results provide a powerful strategy to diagnose and manage the efficiency and stability of perovskite solar cells.

17.
ACS Appl Mater Interfaces ; 10(2): 1846-1853, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29250953

RESUMEN

Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼104 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (Eg). Here, we present a promising FPV based on hexagonal YbFeO3 (h-YbFO) thin-film heterostructure by exploiting its narrow Eg. More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al2O3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces Eg substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

18.
Nanoscale ; 10(27): 13261-13269, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29971282

RESUMEN

Ferroelectric photovoltaics (FPVs) have drawn much attention owing to their high stability, environmental safety, and anomalously high photovoltages, coupled with reversibly switchable photovoltaic responses. However, FPVs suffer from extremely low photocurrents, which is primarily due to their wide band gaps. Here, we present a new class of FPVs by demonstrating switchable ferroelectric photovoltaic effects and narrow band-gap properties using hexagonal ferrite (h-RFeO3) thin films, where R denotes rare-earth ions. FPVs with narrow band gaps suggest their potential applicability as photovoltaic and optoelectronic devices. The h-RFeO3 films further exhibit reasonably large ferroelectric polarizations (4.7-8.5 µC cm-2), which possibly reduces a rapid recombination rate of the photo-generated electron-hole pairs. The power conversion efficiency (PCE) of h-RFeO3 thin-film devices is sensitive to the magnitude of polarization. In the case of the h-TmFeO3 (h-TFO) thin film, the measured PCE is twice as large as that of the BiFeO3 thin film, a prototypic FPV. The effect of electrical fatigue on FPV responses has been further investigated. This work thus demonstrates a new class of FPVs towards high-efficiency solar cell and optoelectronic applications.

19.
Adv Mater ; 30(30): e1707260, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29882243

RESUMEN

Following the celebrated discovery of graphene, considerable attention has been directed toward the rich spectrum of properties offered by van der Waals crystals. However, studies have been largely limited to their 2D properties due to lack of 1D structures. Here, the growth of high-yield, single-crystalline 1D nanobelts composed of transition metal ditellurides at low temperatures (T ≤ 500 °C) and in short reaction times (t ≤ 10 min) via the use of tellurium-rich eutectic metal alloys is reported. The synthesized semimetallic 1D products are highly pure, stoichiometric, structurally uniform, and free of defects, resulting in high electrical performances. Furthermore, complete compositional tuning of the ternary ditelluride nanobelts is achieved with suppressed phase separation, applicable to the creation of unprecedented low-dimensional materials/devices. This approach may inspire new growth/fabrication strategies of 1D layered nanostructures, which may offer unique properties that are not available in other materials.

20.
Sci Rep ; 7(1): 10186, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860572

RESUMEN

Resistive switching devices are recognized as candidates for next-generation memory devices in that they can replace conventional memory devices. In these devices, a WOX film deposited by RF magnetron sputtering with a significant number of oxygen vacancies exhibits a resistive switching property and does not involve the use of a forming process. The resistive switching mechanism involves the hopping of electrons through the sub-band states of the oxygen vacancies in E-field-driven electromigration. X-ray photoemission spectroscopy, ultra-violet photoemission spectroscopy, and transmission electron microscopy-electron energy loss spectroscopy were performed to analyze local variations in the O-vacancies and in the electronic band structure of a WOX thin film. The band structure is responsible for the correlation between the motion of the electrons under the interface effect at the electrodes with the change in the resistance and the bias-polarity dependence of the I-V property of the device. The optimized metal-insulator-metal structure (Pt/WOX/Au), which has an asymmetric electrode and many oxygen vacancies, gives rise to excellent resistive-switching properties with a high on/off ratio on the order of 105 times, a low set voltage of <0.34 V, and a uniform DC cyclic performance in the order of 1500 cycles at room temperature. These specifications can be further adopted for application to non-volatile memory-device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA