Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2221535120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37075071

RESUMEN

Multiple sclerosis (MS) is an incurable autoimmune disease and is currently treated by systemic immunosuppressants with off-target side effects. Although aberrant myeloid function is often observed in MS plaques in the central nervous system (CNS), the role of myeloid cells in therapeutic intervention is currently overlooked. Here, we developed a myeloid cell-based strategy to reduce the disease burden in experimental autoimmune encephalomyelitis (EAE), a mouse model of progressive MS. We developed monocyte-adhered microparticles ("backpacks") for activating myeloid cell phenotype to an anti-inflammatory state through localized interleukin-4 and dexamethasone signals. We demonstrate that backpack-laden monocytes infiltrated into the inflamed CNS and modulated both the local and systemic immune responses. Within the CNS, backpack-carrying monocytes regulated both the infiltrating and tissue-resident myeloid cell compartments in the spinal cord for functions related to antigen presentation and reactive species production. Treatment with backpack-monocytes also decreased the level of systemic pro-inflammatory cytokines. Additionally, backpack-laden monocytes induced modulatory effects on TH1 and TH17 populations in the spinal cord and blood, demonstrating cross talk between the myeloid and lymphoid arms of disease. Backpack-carrying monocytes conferred therapeutic benefit in EAE mice, as quantified by improved motor function. The use of backpack-laden monocytes offers an antigen-free, biomaterial-based approach to precisely tune cell phenotype in vivo, demonstrating the utility of myeloid cells as a therapeutic modality and target.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Esclerosis Múltiple/terapia , Células Mieloides , Sistema Nervioso Central , Monocitos , Ratones Endogámicos C57BL
2.
J Nanobiotechnology ; 19(1): 398, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844629

RESUMEN

BACKGROUND: Nanoparticles have been used for biomedical applications, including drug delivery, diagnosis, and imaging based on their unique properties derived from small size and large surface-to-volume ratio. However, concerns regarding unexpected toxicity due to the localization of nanoparticles in the cells are growing. Herein, we quantified the number of cell-internalized nanoparticles and monitored their cellular localization, which are critical factors for biomedical applications of nanoparticles. METHODS: This study investigates the intracellular trafficking of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in various live single cells, such as HEK293, NIH3T3, and RAW 264.7 cells, using site-specific direct stochastic optical reconstruction microscopy (dSTORM). The time-dependent subdiffraction-limit spatial resolution of the dSTORM method allowed intracellular site-specific quantification and tracking of MNPs@SiO2(RITC). RESULTS: The MNPs@SiO2(RITC) were observed to be highly internalized in RAW 264.7 cells, compared to the HEK293 and NIH3T3 cells undergoing single-particle analysis. In addition, MNPs@SiO2(RITC) were internalized within the nuclei of RAW 264.7 and HEK293 cells but were not detected in the nuclei of NIH3T3 cells. Moreover, because of the treatment of the MNPs@SiO2(RITC), more micronuclei were detected in RAW 264.7 cells than in other cells. CONCLUSION: The sensitive and quantitative evaluations of MNPs@SiO2(RITC) at specific sites in three different cells using a combination of dSTORM, transcriptomics, and molecular biology were performed. These findings highlight the quantitative differences in the uptake efficiency of MNPs@SiO2(RITC) and ultra-sensitivity, varying according to the cell types as ascertained by subdiffraction-limit super-resolution microscopy.


Asunto(s)
Nanopartículas de Magnetita , Microscopía/métodos , Dióxido de Silicio , Análisis de la Célula Individual/métodos , Animales , Transporte Biológico/fisiología , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Nanopartículas de Magnetita/análisis , Nanopartículas de Magnetita/química , Ratones , Células 3T3 NIH , Células RAW 264.7 , Dióxido de Silicio/análisis , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo
3.
Anal Biochem ; 508: 124-8, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27181032

RESUMEN

Flow cytometry and fluorescence activated cell sorting techniques were designed to realize configurable classification and separation of target cells. A number of cell phenotypes with different functionalities have recently been revealed. Before simultaneous selective capture of cells, it is desirable to label different samples with the corresponding dyes in a multiplexing manner to allow for a single analysis. However, few methods to obtain multiple fluorescent colors for various cell types have been developed. Even when restricted laser sources are employed, a small number of color codes can be expressed simultaneously. In this study, we demonstrate the ability to manifest DNA nanostructure-based multifluorescent colors formed by a complex of dyes. Highly precise self-assembly of fluorescent dye-conjugated oligonucleotides gives anisotropic DNA nanostructures, Y- and tree-shaped DNA (Y-DNA and T-DNA, respectively), which may be used as platforms for fluorescent codes. As a proof of concept, we have demonstrated seven different fluorescent codes with only two different fluorescent dyes using T-DNA. This method provides maximum efficiency for current flow cytometry. We are confident that this system will provide highly efficient multiplexed fluorescent detection for bioanalysis compared with one-to-one fluorescent correspondence for specific marker detection.


Asunto(s)
Separación Celular/métodos , ADN Bacteriano , Coloración y Etiquetado/métodos , Separación Celular/instrumentación , Colorimetría , ADN Bacteriano/química , Citometría de Flujo/instrumentación , Coloración y Etiquetado/instrumentación
4.
J Immunol ; 193(9): 4663-74, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25238757

RESUMEN

Differentiation of B cells into Ab-secreting cells induces changes in gene transcription, IgH RNA processing, the unfolded protein response (UPR), and cell architecture. The transcription elongation factor eleven nineteen lysine-rich leukemia gene (ELL2) stimulates the processing of the secreted form of the IgH mRNA from the H chain gene. Mice (mus musculus) with the ELL2 gene floxed in either exon 1 or exon 3 were constructed and crossed to CD19-driven cre/CD19(+). The B cell-specific ELL2 conditional knockouts (cKOs; ell2(loxp/loxp) CD19(cre/+)) exhibit curtailed humoral responses both in 4-hydroxy-3-nitrophenyl acetyl-Ficoll and in 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin immunized animals; recall responses were also diminished. The number of immature and recirculating B cells in the bone marrow is increased in the cKOs, whereas plasma cells in spleen are reduced relative to control animals. There are fewer IgG1 Ab-producing cells in the bone marrow of cKOs. LPS ex vivo-stimulated B220(lo)CD138(+) cells from ELL2-deficient mouse spleens are 4-fold less abundant than from control splenic B cells; have a paucity of secreted IgH; and have distended, abnormal-appearing endoplasmic reticulum. IRE1α is efficiently phosphorylated, but the amounts of Ig κ, ATF6, BiP, Cyclin B2, OcaB (BOB1, Pou2af1), and XBP1 mRNAs, unspliced and spliced, are severely reduced in ELL2-deficient cells. ELL2 enhances the expression of BCMA (also known as Tnfrsf17), which is important for long-term survival. Transcription yields from the cyclin B2 and the canonical UPR promoter elements are upregulated by ELL2 cDNA. Thus, ELL2 is important for many aspects of Ab secretion, XBP1 expression, and the UPR.


Asunto(s)
Inmunoglobulinas/genética , ARN Mensajero/genética , Factores de Elongación Transcripcional/metabolismo , Respuesta de Proteína Desplegada , Animales , Antígenos CD19/genética , Antígenos CD19/metabolismo , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Subgrupos de Linfocitos B/ultraestructura , Diferenciación Celular , Eliminación de Gen , Expresión Génica , Orden Génico , Marcación de Gen , Sitios Genéticos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Inmunoglobulinas/metabolismo , Inmunofenotipificación , Ratones , Ratones Noqueados , Fenotipo , Transcripción Genética , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
5.
Biochem Biophys Res Commun ; 457(4): 542-6, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25597993

RESUMEN

During the self-assembly of different numbers of oligonucleotides comprising junctional DNA nanostructures, a change in environmental variables (e.g., temperature or salt concentration) has a substantial influence on the final products. Further, distinctive annealing temperatures of oligonucleotides are observed depending on the state of hybridization. Here, we present an evaluation of the annealing characteristics of oligonucleotides for the formation of a simple junctional DNA nanostructure using an annealing curve analysis. This method may be useful for analyzing the formation of complex junctional DNA nanostructures.


Asunto(s)
ADN/química , Nanoestructuras/química , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Sales (Química)/química , Temperatura
6.
Small ; 11(41): 5515-9, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26310990

RESUMEN

A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved.


Asunto(s)
Células Artificiales/química , Núcleo Celular/química , ADN Ligasas/química , Liposomas/química , MicroARNs/síntesis química , Plásmidos/química
7.
Langmuir ; 31(3): 912-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25585044

RESUMEN

DNA hydrogels are promising materials for various fields of research, such as in vitro protein production, drug carrier systems, and cell transplantation. For effective application and further utilization of DNA hydrogels, highly effective methods of nano- and microscale DNA hydrogel fabrication are needed. In this respect, the fundamental advantages of a core-shell structure can provide a simple remedy. An isolated reaction chamber and massive production platform can be provided by a core-shell structure, and lipids are one of the best shell precursor candidates because of their intrinsic biocompatibility and potential for easy modification. Here, we demonstrate a novel core-shell nanostructure made of gene-knitted X-shaped DNA (X-DNA) origami-networked gel core-supported lipid strata. It was simply organized by cross-linking DNA molecules via T4 enzymatic ligation and enclosing them in lipid strata. As a condensed core structure, the DNA gel shows Brownian behavior in a confined area. It has been speculated that they could, in the future, be utilized for in vitro protein synthesis, gene-integration transporters, and even new molecular bottom-up biological machineries.


Asunto(s)
Colesterol/química , ADN de Cadena Simple/química , Nanoestructuras/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Bacteriófago T4/química , Bacteriófago T4/enzimología , Benzotiazoles , ADN de Cadena Simple/síntesis química , Diaminas , Colorantes Fluorescentes , Hidrogeles/química , Ligasas/química , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura , Conformación de Ácido Nucleico , Compuestos Orgánicos , Quinolinas , Proteínas Virales/química , Xantenos
8.
Environ Res ; 140: 704-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26094059

RESUMEN

Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.


Asunto(s)
Galio/química , Residuos Industriales , Nitrógeno/química , Compuestos Orgánicos/química , Semiconductores , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectrometría por Rayos X
9.
Environ Res ; 142: 615-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26318256

RESUMEN

Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30v ol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling).


Asunto(s)
Automóviles , Contaminantes Ambientales/análisis , Vidrio , Polivinilos/química , Reciclaje , Contaminantes Ambientales/química , Microscopía Electrónica de Rastreo , República de Corea , Análisis Espectral/métodos
10.
Environ Res ; 138: 401-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25769129

RESUMEN

Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching.


Asunto(s)
Residuos Electrónicos/análisis , Galio/análisis , Reciclaje/métodos , Administración de Residuos/métodos , Residuos Industriales/análisis
11.
Rapid Commun Mass Spectrom ; 28(7): 773-80, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24573808

RESUMEN

RATIONALE: Although in silico prediction of selected reaction monitoring (SRM) peptide transitions is the most commonly used approach in quantitative proteomics, systematically detectable peptide transitions selected from actual experimental data are desirable. Here, we demonstrated the use of two triple quadrupole mass spectrometry (QqQ-MS) operation modes to identify reliable SRM peptide transitions of target peptides selected from a shotgun proteomic linear ion-trap mass spectrometry (LIT-MS) profiling dataset. METHODS: Transition ions (Q1 and Q3 ions) of target peptides were selected from the LIT MS/MS spectra. We performed multiplexed SRM blindly for the selected transition ions of target peptides using QqQ-MS and selected peptide transitions for which the chromatographically aligned and correlated ion intensities to the corresponding fragment ions appeared in the LIT MS/MS spectra. The identities of the peptides were further confirmed by MS/MS spectra acquired via SRM-triggered MS/MS on QqQ-MS. RESULTS: Despite the different MS platforms, we observed similar MS/MS patterns and relative ion abundance using both LIT-MS and QqQ-MS. Therefore, we were able to determine peptide transitions based on matching the chromatographic peak areas of all the selected Q3 ions of target peptides by the order of the corresponding ion intensities in the LIT MS/MS spectra. This approach demonstrated an efficient method to determine SRM peptide transitions, particularly when the target proteins are in low abundance and are therefore not easily detected by the QqQ full MS/MS scan mode. We employed this approach to determine the SRM peptide transitions of mitochondrial oxidative phosphorylation (OXPHOS) proteins involved in mitochondrial ATP synthesis. CONCLUSIONS: The multiplexed product-ion scan mode using QqQ-MS generates systematically detectable peptide transitions in a single liquid chromatography/MS run, in which we were able to identify SRM peptides that represent known target proteins in complex biological samples. The method presented here is easy to implement and has high-throughput capabilities as a result of the short analysis time. It is therefore well suited for the design of optimal SRM experiments.


Asunto(s)
Simulación por Computador , Iones/química , Fragmentos de Péptidos/química , Mapeo Peptídico/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Humanos , Iones/análisis , Datos de Secuencia Molecular , Fragmentos de Péptidos/análisis
12.
Int Ophthalmol ; 34(1): 117-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23525958

RESUMEN

Strabismus in adults is increasing and has recently become an important focus of attention due to the development of refractive surgery techniques. In this case, permanent strabismus developed in a woman with previous high myopia after implantable anterior intraocular lens surgery. An ophthalmologic examination revealed the presence of a lens which was placed slightly downward in relation to the center of visual axis in the anterior chambers and up-drawn pupils in both eyes. The prismatic effect due to lens decentration may be the main cause of strabismus. Therefore, we suggest precise intraocular lens insertion and placement technique during surgery as well as careful ophthalmologic assessment including cover/uncover tests in all candidates for refractive surgery and full ocular motility evaluation if there is any doubt about binocular issues.


Asunto(s)
Implantación de Lentes Intraoculares/efectos adversos , Complicaciones Posoperatorias , Estrabismo/etiología , Adulto , Femenino , Humanos , Lentes Intraoculares/efectos adversos
13.
Bioeng Transl Med ; 9(1): e10588, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193112

RESUMEN

Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.

14.
ACS Appl Mater Interfaces ; 16(22): 28184-28192, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770711

RESUMEN

B cells, despite their several unique functionalities, remain largely untapped for use as an adoptive cell therapy and are limited to in vitro use for antibody production. B cells can be easily sourced, they possess excellent lymphoid-homing capabilities, and they can act as antigen-presenting cells (APCs), offering an alternative to dendritic cells (DCs), which have shown limited efficacy in the clinical setting. Soluble factors such as IL-4 and anti-CD40 antibody can enhance the activation, survival, and antigen-presenting capabilities of B cells; however, it is difficult to attain sufficiently high concentrations of these biologics to stimulate B cells in vivo. Micropatches as Cell Engagers (MACE) are polymeric microparticles, surface functionalized with anti-CD40 and anti-IgM, which can attach to B cells and simultaneously engage multiple B-cell receptors (BCR) and CD40 receptors. Stimulation of these receptors through MACE, unlike free antibodies, enhanced the display of costimulatory molecules on the B-cell surface, increased B-cell viability, and improved antigen presentation by B cells to T cells in vitro. B-cell activation by MACE further synergized with soluble IL-4 and anti-CD40. MACE also elicited T-cell chemokine secretion by B cells. Upon intravenous adoptive transfer, MACE-bound B cells homed to the spleen and lymph nodes, key sites for antigen presentation to T cells. Adoptive transfer of MACE-B cells pulsed with the CD4+ and CD8+ epitopes of ovalbumin significantly delayed tumor progression in a murine subcutaneous EG7-OVA tumor model, demonstrating the functional benefit conferred to B cells by MACE.


Asunto(s)
Linfocitos B , Antígenos CD40 , Polímeros , Animales , Linfocitos B/inmunología , Ratones , Antígenos CD40/metabolismo , Antígenos CD40/inmunología , Polímeros/química , Receptores de Antígenos de Linfocitos B/metabolismo , Humanos , Linfocitos T/inmunología , Interleucina-4 , Ratones Endogámicos C57BL
15.
ACS Appl Mater Interfaces ; 16(22): 28070-28079, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38779939

RESUMEN

Cellular hitchhiking is an emerging strategy for the in vivo control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells via local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer. DC vaccines hold great potential for a spectrum of diseases, and the combination drug delivery is an attractive strategy to manipulate their function and overcome in vivo plasticity. However, DCs are not compatible with current hitchhiking approaches due to their broad phagocytic capacity. In this work, we developed and validated META (membrane engineering using tannic acid) to enable DC cellular hitchhiking for the first time. META employs the polyphenol tannic acid (TA) to facilitate supramolecular assembly of protein drug cargoes on the cell membrane, enabling the creation of cell surface-bound formulations for local drug delivery to carrier DCs. We optimized META formulations to incorporate and release protein cargoes with varying physical properties alone and in combination and to preserve DC viability and critical functions such as migration. We further show that META loaded with either a pro- or anti-inflammatory cargo can influence the carrier cell phenotype, thus demonstrating the flexibility of the approach for applications from cancer to autoimmune disease. Overall, this approach illustrates a new platform for the local control of phagocytic immune cells as a next step to advance DC therapies in the clinic.


Asunto(s)
Células Dendríticas , Polifenoles , Taninos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Taninos/química , Taninos/farmacología , Polifenoles/química , Polifenoles/farmacología , Humanos , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Ratones , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos
16.
Adv Healthc Mater ; : e2304144, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581301

RESUMEN

Adoptive cell therapies are dramatically altering the treatment landscape of cancer. However, treatment of solid tumors remains a major unmet need, in part due to limited adoptive cell infiltration into the tumor and in part due to the immunosuppressive tumor microenvironment. The heterogeneity of tumors and presence of nonresponders also call for development of antigen-independent therapeutic approaches. Myeloid cells offer such an opportunity, given their large presence in the immunosuppressive tumor microenvironment, such as in triple negative breast cancer. However, their therapeutic utility is hindered by their phenotypic plasticity. Here, the impressive trafficking ability of adoptively transferred monocytes is leveraged into the immunosuppressive 4T1 tumor to develop an antitumor therapy. To control monocyte differentiation in the tumor microenvironment, surface-adherent "backpacks" stably modified with interferon gamma (IFNγ) are developed to stimulate macrophage plasticity into a pro-inflammatory, antitumor phenotype, a strategy as referred to as Ornate Polymer backpacks on Tissue Infiltrating Monocytes (OPTIMs). Treatment with OPTIMs substantially reduces tumor burden in a mouse 4T1 model and significantly increases survival. Cytokine and immune cell profiling reveal that OPTIMs remodeled the tumor microenvironment into a pro-inflammatory state.

17.
Nat Biomed Eng ; 8(5): 579-592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424352

RESUMEN

Tumour-associated neutrophils can exert antitumour effects but can also assume a pro-tumoural phenotype in the immunosuppressive tumour microenvironment. Here we show that neutrophils can be polarized towards the antitumour phenotype by discoidal polymer micrometric 'patches' that adhere to the neutrophils' surfaces without being internalized. Intravenously administered micropatch-loaded neutrophils accumulated in the spleen and in tumour-draining lymph nodes, and activated splenic natural killer cells and T cells, increasing the accumulation of dendritic cells and natural killer cells. In mice bearing subcutaneous B16F10 tumours or orthotopic 4T1 tumours, intravenous injection of the micropatch-loaded neutrophils led to robust systemic immune responses, a reduction in tumour burden and improvements in survival rates. Micropatch-activated neutrophils combined with the checkpoint inhibitor anti-cytotoxic T-lymphocyte-associated protein 4 resulted in strong inhibition of the growth of B16F10 tumours, and in complete tumour regression in one-third of the treated mice. Micropatch-loaded neutrophils could provide a potent, scalable and drug-free approach for neutrophil-based cancer immunotherapy.


Asunto(s)
Inmunoterapia , Ratones Endogámicos C57BL , Neutrófilos , Polímeros , Animales , Neutrófilos/inmunología , Inmunoterapia/métodos , Ratones , Polímeros/química , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Femenino , Ratones Endogámicos BALB C , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/patología , Neoplasias/inmunología , Neoplasias/terapia , Células Asesinas Naturales/inmunología , Humanos
18.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567994

RESUMEN

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Asunto(s)
Nanopartículas , Neoplasias , Vacunas , Animales , Ratones , Neoplasias/terapia , Adyuvantes Inmunológicos , Inmunoterapia/métodos , Nanopartículas/química
19.
Sci Transl Med ; 16(728): eadk5413, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170792

RESUMEN

The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Animales , Ratones , Porcinos , Gadolinio , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Conmoción Encefálica/patología , Macrófagos/patología
20.
PNAS Nexus ; 3(1): pgad434, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38187808

RESUMEN

Traumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities. Macrophages are particularly suited for this task, given the role of macrophages and microglia in the dysregulated inflammatory response after TBI. However, maintaining adoptively transferred macrophages in an anti-inflammatory, wound-healing phenotype against the proinflammatory TBI milieu is essential. To achieve this, we developed discoidal microparticles, termed backpacks, encapsulating anti-inflammatory interleukin-4, and dexamethasone for ex vivo macrophage attachment. Backpacks durably adhered to the surface of macrophages without internalization and maintained an anti-inflammatory phenotype of the carrier macrophage through 7 days in vitro. Backpack-macrophage therapy was scaled up and safely infused into piglets in a cortical impact TBI model. Backpack-macrophages migrated to the brain lesion site and reduced proinflammatory activation of microglia in the lesion penumbra of the rostral gyrus of the cortex and decreased serum concentrations of proinflammatory biomarkers. These immunomodulatory effects elicited a 56% decrease in lesion volume. The results reported here demonstrate, to the best of our knowledge, a potential use of a cell therapy intervention for a large animal model of TBI and highlight the potential of macrophage-based therapy. Further investigation is required to elucidate the neuroprotection mechanisms associated with anti-inflammatory macrophage therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA